
D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 46

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D5.6

URBANITE DevOps infrastructure

Editor(s): Iñaki Etxaniz, Gorka Benguría

Responsible Partner: Tecnalia

Status-Version: Final – v1.0

Date: 31.03.2021

Ref. Ares(2021)2241184 - 31/03/2021

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 46

Distribution level (CO, PU): PU

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable: URBANITE DevOps infraestructura

Due Date of Delivery to the EC: 31/03/2021

Work package responsible for the
Deliverable:

WP5 - URBANITE ecosystem integration and DevOps

Editor(s): Tecnalia

Contributor(s):
Iñaki Etxaniz (Tecnalia),
Gorka Benguría (Tecnalia)

Reviewer(s): Giuseppe Ciulla (ENG)

Approved by: All Partners

Recommended/mandatory
readers:

Mandatory: WP3, WP4
Recommended: WP6

Abstract: This document describes the deliverable D5.6, that is

composed by an infrastructure and a set of software
tools and procedures to support the continuous
integration, delivery and deployment in the project.

Keyword List: Development environment, integration, testing,
deployment, devops, container, git.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

The document itself is delivered as a description for the
European Commission about the released software, so
it is not public.

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://creativecommons.org/licenses/by-sa/3.0/

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 46

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 15/01/2021 Table of contents defined Tecnalia

v0.2 25/01/21 First draft version Tecnalia

v0.3 10/02/21 Docker section added Tecnalia

V0.4 15/02/21 DevOps procedures added Tecnalia

v0.5 26/02/21 Conclusion and Executive Summary Tecnalia

V0.6 10/03/21 GitLab CI/CD updated, ready for
internal review

Tecnalia

V0.7 17/03/21 Internally reviewed Engineering

V1.0 30/03/2021 Ready for submission Tecnalia

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 46

Table of Contents

Table of Contents .. 4

List of Figures .. 5

List of Tables .. 6

Terms and Abbreviations .. 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 DevOps framework ... 8

2.1 Gitlab ... 9

2.1.1 Software repository ... 9

2.1.2 Development tracking ... 11

2.2 GiLab CI/CD ... 12

2.2.1 Branches .. 12

2.2.2 Pipeline .. 13

2.2.3 Runners ... 14

2.3 Docker ... 14

2.3.1 Portainer .. 14

2.3.2 Artifactory ... 15

3 DevOps procedures ... 16

3.1 Operation procedures ... 16

3.1.1 Development team .. 17

3.1.1.1 Upgrading a component in integration environment 17

3.1.1.2 Debugging a component deployment ... 19

3.1.1.3 Creating an issue ... 26

3.1.2 Release responsible ... 28

3.1.2.1 Promoting a component to Master... 28

3.1.2.2 Release packaging for sharing ... 30

3.1.3 Pilot responsible .. 34

3.1.3.1 Deploying/Updating a release to Pilots ... 34

3.2 Maintenance procedures .. 36

3.2.1 Integrator .. 36

3.2.1.1 Component integration/update .. 36

3.2.1.2 Component removal ... 38

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 46

3.2.1.3 Environment migration ... 40

3.2.1.4 Version control system migration ... 43

3.2.2 Maintenance responsible .. 43

3.2.2.1 Server monitoring ... 43

3.2.2.2 Endpoints checking.. 44

3.2.2.3 Containers monitoring .. 44

4 Conclusions ... 44

5 References ... 46

List of Figures

FIGURE 1. THE THREE ENVIRONMENTS IN URBANITE. .. 9
FIGURE 2. PRIVATE AND PUBLIC GITLAB REPOSITORIES OF URBANITE. .. 10
FIGURE 3. PRIVATE GITLAB REPOSITORY OF URBANITE, ORGANIZED BY WORK PACKAGES. 11
FIGURE 4. THE TWO BRANCHES IN THE INTEGRATION REPOSITORY .. 12
FIGURE 5. GRAPH VIEW OF THE BRANCHES IN THE INTEGRATION REPOSITORY... 13
FIGURE 6. SOME PIPELINES IN THE INTEGRATION REPOSITORY.. 14
FIGURE 7. PORTAINER: VIEW OF THE URBANITE-DEVELOP STACK OF CONTAINERS 15
FIGURE 8. ARTIFACTORY FOR THE URBANITE PROJECT. .. 16
FIGURE 9. STAGES AND JOBS IN THE PIPELINE OF ANY BRANCH. .. 18
FIGURE 10. STAGES IN THE PIPELINE IN THE “DEVELOP” BRANCH. ... 18
FIGURE 11. THE “DEVELOP” AND “MASTER” ENVIRONMENTS. .. 19
FIGURE 12. FAILURE -IN “TEST” STAGE- IN THE PIPELINE. ... 19
FIGURE 13. PIPELINE PAGE. ... 20
FIGURE 14. PIPELINE ID TO ACCESS THE DETAILS. .. 20
FIGURE 15. DETAILS PAGE OF A PIPELINE. .. 21
FIGURE 16. DETAILS OF A JOB THAT HAS BEEN ERASED. .. 21
FIGURE 17. DETAILS OF A JOB. ... 22
FIGURE 18. PORTAINER, STACKS LIST. .. 23
FIGURE 19. PORTAINER, CONTAINER LIST. .. 23
FIGURE 20. PORTAINER, CONTAINER DETAILS. .. 24
FIGURE 21. PORTAINER, CONTAINER LOGS. .. 25
FIGURE 22. PORTAINER, ACCESSING CONTAINER CONSOLE. ... 25
FIGURE 23. PORTAINER, CONTAINER CONSOLE. .. 26
FIGURE 24. PORTAINER, ACTIONS ON CONTAINERS. ... 26
FIGURE 25. PORTAINER, SELECTING PROJECT TO CREATE AN ISSUE. .. 27
FIGURE 26. PORTAINER, CREATING AN ISSUE. ... 27
FIGURE 27. PORTAINER, NEW ISSUE DETAILS. ... 28
FIGURE 28. GITLAB, BRANCH CONFIGURATION. .. 29
FIGURE 29. GITLAB, “MASTER” PIPELINE. .. 30
FIGURE 30. PORTAINER, ADDING A REGISTER. ... 31
FIGURE 31. PORTAINER, REGISTRY DETAILS. ... 32

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 46

FIGURE 32. PORTAINER, IMAGE LIST. .. 33
FIGURE 33. PORTAINER, CREATING AN ISSUE. ... 33
FIGURE 34. PORTAINER, IMAGE DETAILS. ... 34
FIGURE 35. ARTIFACTORY. .. 34
FIGURE 36. GITLAB, RUNNERS. .. 41
FIGURE 37. GITLAB, VARIABLES. ... 42
FIGURE 38. GITLAB, FORCING A PIPELINE TO RUN. ... 42
FIGURE 39. PORTAINER, REMOVING A RUNNER. .. 43

List of Tables

NO TABLES

Terms and Abbreviations

CI/CD Continuous Integration/Continuous Deployment

CLI Command-line interface

DevOps Development and Operation

DNS Domain Name System

DoW Description of Work

EC European Commission

GUI Graphical User Interface

KR Key Result

QA Quality Assurance

SCM Source Code Management

Sw Software

URL Uniform Resource Locator

WP Work Package

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 46

Executive Summary

The main key results of URBANITE are software-based components. To implement and manage
these components and construct the URBANITE ecosystem, a DevOps strategy and
infrastructure have been deployed. The strategy was described in a previous deliverable (D5.3).
The infrastructure that implements this strategy is the deliverable D5.6, which is described in
this companion document.

The document is delivered as a description of the released software infrastructure for the EU
Commission. Apart from that, it is intended that this document facilitates the partner’s
comprehension of the provided infrastructure and its use, and hence the work in the technical
work packages, during the development (WP2, WP3, WP4), integration, deployment (WP5) and
validation (WP6) in URBANITE. This deliverable is the result of Task 5.3 - Continuous Integration
and DevOps approach.

First, the project DevOps infrastructure that will be used for managing the development process
is presented, describing in detail the proposed supporting tools/technologies. The GitLab,
provided by Tecnalia, will be used as a version control system, hosting both private and public
repositories. A microservice approach will be applied to integrate the outcomes of the different
development teams, prioritizing containerization technologies whenever possible. Docker will
be used as containerization technology for running the components. Besides, whenever possible
an applicable docker container will also take care of the building of the component. Container
orchestrations technologies will be used to specify how the containers are configured, including
details such as networking, storage, and scalability. The technology that we use for the
orchestration is docker-compose, as it requires less infrastructure and other technologies could
be adopted in the future such as Kubernetes if the pilots or the project evolution requires to do
so. Finally, GitLab CI/CD will be used to run the continuous integration scripts that automate the
deployment of some of the environments and their transitions. It greatly integrates with the
version control system (GitLab) and the delegation of the compiling of the components to docker
technology simplifies the integration making GitLab a practical and powerful solution.

Next, the procedures related to the DevOps approach are presented. These procedures are
organized in two categories operation procedures and maintenance procedures. The operation
procedures cover the interactions to generate, debug, test and improve the URBANITE platform
from the contribution of the different development teams. The maintenance procedures cover
the activities to deploy and maintain the DevOps platform in a healthy state.

The most important results of the DevOps methodology and integration tasks in URBANITE will
be the DevOps infrastructure (to be released in M12), described in this document and the
sequential-iterative URBANITE Ecosystem (M15 and following).

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 46

1 Introduction

1.1 About this deliverable

This report is a companion document of the deliverable D5.6 – URBANITE DevOps infrastructure,
that is composed by infrastructure, a set of software tools and procedures to support the
continuous integration, delivery and deployment in the project. The document itself is delivered
as a description of the released software for the European Commission.

The strategy to be followed in the integration of URBANITE ecosystem was already described in
deliverable D5.3 [1]. The current document explains how this strategy has been finally
implemented, provides more details about the infrastructure, which tools are being used, how
they are configured and managed, and the DevOps procedures used by the operators during the
integration.

This deliverable is a result of Task 5.3 - Continuous Integration and DevOps approach.

1.2 Document structure

The document is organized into three (3) main sections plus a conclusion chapter, with the first
section presenting the deliverable’s objective and structure.

The second section -DevOps Framework- describes the DevOps infrastructure that will be used
to support the software implementations in URBANITE, including the mechanism used to
continuously build, run, test and deploy the URBANITE platform from the items developed by
the different teams in the URBANITE project, the tools adopted and the technologies used.

The third section –DevOps Procedures- is devoted to the common activities carried out by the
users over the infrastructure, to integrate the different components of the URBANITE solution,
to dispose of the result to the pilots, to manage the feedback from the integration, etc. It will be
split into operational procedures and maintenance procedures. The operation procedures cover
the interactions to generate, debug, test and improve the URBANITE platform from the
contribution of the different development teams. The maintenance procedures cover the
activities to deploy and maintain the DevOps platform in a healthy state.

Finally, the conclusion section resumes the most relevant points of the document. The
document ends with the references and appendixes.

2 DevOps framework

The DevOps approach in URBANITE consists of several stages an application goes through, from
development to integration, delivery and production. DevOps integrates development and
operations, incorporating practices such as continuous delivery, continuous integration, and
collaboration.

The DevOps framework refers to the infrastructure and tools to be used internally to follow this
DevOps approach and finally ensure the successful integration of the different components of
the URBANITE solution.

In URBANITE, the DevOps approach will be structured in three environments, as depicted in
figure 1. These environments are development, integration and production or piloting.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 46

Figure 1. The three environments in URBANITE.

• The Development environment is implemented by each work team behind each component
of the URBANITE solution. The technologies in the development environment largely depend
on the technologies used to implement the component as well as the background of that
team. Nevertheless, there are some common requirements at the development, the use of
REST (Open API) in defining the interfaces of components.

• The Integration environment focuses on compiling the code and performing the unit test
and integration test reports. This stage also includes the availability of a common storage
mechanism for the binaries created, as well as the assets required to deploy the applications
(e.g., configuration files, infrastructure-as-code files, deployment scripts).

• The Pilots environments are where the Use Case demos of URBANITE are deployed and
implemented. These environments are foreseen to be located under the control of the final
users, most probably into their premises.

The DevOps approach relies mainly in the Integration environment. The other two environments
defined in the project (development and pilots) can be mentioned but are not the main focus of
this document.

The DevOps approach in URBANITE is implemented using several interconnected tools: the
version control tool: GitLab; the continuous integration tool: GitLab CI/CD; the containerization
and deployment tool for easier portability and reconstruction of the solution: Docker; and the
storage for binaries: Artifactory.

In the following sections of the chapter, the above-mentioned tools, and how they are organized
and configured in URBANITE, is briefly described. This description will provide the reader with
an overview of the framework, and will be followed by the description of more detailed
procedures to use the framework in chapter 3-DevOps procedures.

2.1 Gitlab

2.1.1 Software repository

The technical work packages of URBANITE will use GitLab [2] to manage source code and for
revision control. GitLab is a Web-based Git repository hosting service. It offers all the distributed

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 46

revision control and source code management (SCM) functionality of Git [3] and adds additional
proprietary features.

A source control tool helps store the code in different chains so one can see every change and
collaborate more efficiently by sharing those changes. Rather than waiting on change approval
boards before deploying to production, developers can improve code quality and throughput
with peer reviews done via pull requests. Pull requests tell the team about changes some
developer has pushed to a development branch in your repository. The team can then review
the proposed changes and discuss modifications before integrating them into the main code
line. Pull requests increase the quality of the software, which results in less bugs/incidents, and
faster development.

The URBANITE GitLab1 is offered by Tecnalia, hosting private and public repositories.

• The private2 repositories are used to host the initial stages of the different components
of the project until they are mature enough. The private repositories will also be used
to store the pilot-oriented specific source code and any proprietary implementations of
the partners that are not intended to be made public.

• Those components to be released under open source license will be deployed in the
pubic3 repositories, where they will be publicly available.

Figure 2. Private and public GitLab repositories of URBANITE.

1 https://git.code.tecnalia.com/urbanite
2 https://git.code.tecnalia.com/urbanite/private
3 https://git.code.tecnalia.com/urbanite/public

https://git.code.tecnalia.com/urbanite
https://git.code.tecnalia.com/urbanite/private
https://git.code.tecnalia.com/urbanite/public

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 46

Figure 3. Private GitLab repository of URBANITE, organized by Work Packages.

2.1.2 Development tracking

GitLab issue tracker [4] is a tool for managing the development, for collaboratively developing
ideas, solving problems and planning work. Issues are always associated with a specific project
(repository), but if there are multiple projects in a group, one can also view all the reported
problems collectively at the group level. The issue tracker comes integrated with GitLab, the
source code management in use in the project

Issues will be used to track the status of feature proposals, bug reports, new code
implementations. Each issue in URBANITE includes the following attributes:

• Content: Title, Description

• People: Author, Assignee

• State: open/closed

• Planning and tracking: Milestone, Due date, Weight, Labels

Labels are part of issue boards and permits categorize issues using colours and descriptive titles,
and filter, manage and search the issues. In URBANITE the labels are going to be used to
categorize issues according to components and Use Cases. At the time of writing, these are the
labels foreseen:

• Component labels: Traffic simulation, Policy simulation & Validation, Recommendation
engine, Advanced visualization, Prediction, Correlation discovery, Data clustering, Data
projection, Self-organizing map, Controller, Data storage & retrieval, Data
fusion/aggregation, Data transformation, Data curation, Data preparation, Data
harvesting, Data anonymization

• Use Cases labels: Helsinki, Bilbao, Messina, Amsterdam

• Type labels: bug, suggestion, enhancement

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 46

Milestones will be defined as initially planned in the URBANITE Proposal DoW [5], that is, at
months M15, M27 and M33.

2.2 GiLab CI/CD

Continuous integration is the practice of making frequent commits to a common source code
repository. It’s continuously integrating code changes into the existing code base so that any
conflicts between different developer’s code changes are quickly identified and relatively easy
to remediate. If, in addition, the build and test processes are automated, this notably increases
deployment efficiency.

In URBANITE, GitLab CI/CD [6] is used as the continuous integration and deployment tool. GitLab
CI/CD is naturally integrated in GitLab. The setup of GitLab CI/CD for projects hosted on GitLab
is easy since it uses the GitLab API for setting up hooks. GitLab CI/CD is a visual management
tool, so it can be used as an interactive and operational dashboard for release management.

The automation scripts needed to run the integration and deployment tasks are maintained in
Git, the source management tool, so that the integration tasks are included in the configuration
management. The elements that configure the URBANITE continuous integration and
deployment are listed below.

2.2.1 Branches

In URBANITE, the CI/CD is implemented in a (private) particular repository for integration:
URBANITE-deploy. Two branches are defined in URBANITE-deploy: develop & master.

Figure 4. The two branches in the integration repository

Developers are allowed to commit and merge their code in develop branch (default). In the
master branch, however, only maintainers are allowed to merge. The master branch is destined
to contain the tested, verified releases.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 46

Figure 5. Graph view of the branches in the integration repository

2.2.2 Pipeline

Pipelines4 are the top-level component of continuous integration, delivery, and deployment.
Pipelines comprise Jobs, which define what to do (e.g., compile or test), and Stages, which
define when to run the jobs (e.g., stages that run tests after stages that compile the code).
If any job in a stage fails, the next stage is not (usually) executed and the pipeline ends early.
If all jobs in a stage succeed, the pipeline moves on to the next stage.

In URBANITE, the pipeline is composed by 5 stages: build, deploy, tests, stop and debug. The
pipeline, as is standard in the tool, is defined in the .gitlab-ci.yml5 file. The pipeline is launched
when a merge is accepted and can be controlled and manipulated through a graphical interface.

4 https://docs.gitlab.com/ee/ci/pipelines/
5 In GitLab CI/CD, a gitlab-ci.yml file, in the root of the repository, contains the CI/CD configuration.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 46

Figure 6. Some pipelines in the integration repository

The pipeline tasks are based in docker-compose, and are defined and distributed in different
yaml files, which are called from the gitlab-ci.yml attending the branch in use and the task to be
performed.

2.2.3 Runners

A runner is a process that picks up and executes jobs of the pipeline. Multiple jobs in the same
stage can be executed in parallel, provided we have concurrent runners.

In URBANITE, a runner has been defined by now. It runs in one of the machines of the integration
environment, URBANITE.esilab.org, and runs the GitLab CI/CD jobs defined.

2.3 Docker

Infrastructure as Code (IaC) is a form of configuration management that codifies an
organization's infrastructure resources into text files. These infrastructure files are then
committed to a version control system like GitLab.

In URBANITE, Docker is the IaC technology chosen. Docker allows provisioning to be more
consistent and reproducible. Containers allow, using the code, the explicit provision of the
configuration of the containers, that can be applied and reapplied many times, to put a server
into a known baseline: operating system, packages to include, content, configuration, etc.
Docker allows containers creation, instantiation, stopping and deletion, logs communication and
persistency definition.

Using Docker technology implies that each “dockerizable” component in URBANITE must have
an associated Dockerfile in its repository. A Dockerfile is a text document that contains all the
commands to assemble an image automatically. A very simple Dockerfile looks like this:

FROM httpd:2.4

RUN mkdir /usr/local/apache2/htdocs/ui

COPY ./public-html/ /usr/local/apache2/htdocs/ui

2.3.1 Portainer

Portainer is an open source tool for managing container-based software applications. It can be
used to set up and manage environments, deploy applications, monitor app performance and
triage problems.

In URBANITE, a Portainer instance has been deployed to make simpler for developers and
integrators deploying apps and troubleshooting problems.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 46

Figure 7. Portainer: view of the URBANITE-develop stack of containers

2.3.2 Artifactory

Some container technologies support the container’s registry usage, where the developed
containers can be uploaded so that other team members can download, use, and test them with
a small set of instructions.

A binary repository manager is a dedicated server application designed to manage binary
components needed for the applications that we build. Using a repository manager is one of the
best practices for using any build tools.

In URBANITE, we are using Artifactory as a repository manager. We offer a registry at the level
of the project, where all binary artefacts (docker images) can be stored and downloaded. This
provides efficiency, reliability, consistency and facilitates automation using its REST API.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 46

Figure 8. Artifactory for the URBANITE project.

3 DevOps procedures

In this section, we describe the different procedures that are associated with the DevOps
infrastructure established in URBANITE. These procedures aim to support the integration of the
components coming from the different development teams that contribute to the URBANITE
platform and serve to several roles in the project:

• Development teams: that implement components and want to test them within the
URBANITE platform.

• Integrators: in charge of putting all the pieces together

• DevOps infrastructure maintainer: in charge of monitoring the health and perform
maintenance activities.

• Release responsible: in charge of delivering and updating the platform for the project.

• Pilot Responsible: in charge of managing, planning, scheduling, and controlling software
delivery towards the project pilots.

One person can, and probably will perform more than one of these generic roles in the project.
Nevertheless, we have preferred to separate them for the sake of clarity.

3.1 Operation procedures

This section describes the procedures for the development teams, the release responsible and
the pilot responsible. A separate section will be provided for each of the roles.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 46

3.1.1 Development team

The development team oversees coding the different parts of the application and configuring
their surrounding components and services (such as databases, big data infrastructures,
message queues, etc.) when necessary.

In this section, we include procedures related with the testing of changes in already integrated
components that do not require to change the integration setup. Changes in the integration
setup -such as adding components or modifying the way in which they are integrated- require
the supervision and support from the Integrator and are described latter on.

3.1.1.1 Upgrading a component in integration environment

The objective of this procedure is to allow the development teams to upgrade their assets
autonomously in the integration environment. Using this procedure, they create a new branch in
the deployment repository with the last changes. That branch is tested against the automated
tests, and if it succeeds, they will be allowed to merge them into the “develop” branch. As soon
as the code is merged, the development environment will be updated with the last changes, and
everyone in the project will have access to them for evaluation and interactive testing purposes.

REQUIRED:

Internet connection, Git client.

PROCEDURE:

[NOTE1: The name of the component is indicated through the text as [component_name].]

 [NOTE2: in case that the component or any of its associated files requires changes in their start-
up configuration, communicate with the Integrator to execute the Maintenance procedure
“Component integration/update”.]

Make sure that the desired changes to the component are committed and pushed into the
component repository. Also, be sure that the development tests have been performed, if any.

Take note of the commit id to be integrated with the rest of the parts of the URBANITE platform,
for example, 3a661d46.

Clone locally the URBANITE-deploy repo
https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy. In case it has been cloned
before, just pull the latest changes from the remote repo. Be sure to be in the “develop” branch

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

deploy

cd URBANITE-deploy

git checkout develop

git pull --recurse-submodules

git submodule update --init --recursive

Check that we are in the latest version, issuing a git status with a result showing no changes. In
case we see any undesired change, we need to reset it or take it into account for the upcoming
commit.

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 46

git status

Create a new branch for the changes we are going to introduce. The recommended branch name
is “update” plus an identifier (e.g., update/ui_001). This will group all the updates in the GitLab
user interface. Then go to the folder in which the component is linked (e.g. /[component_name])
and checkout the desired commit.

git checkout -b update/[component_name]_001

cd git/[component_name]

git pull

git checkout 3a661d46

Come back to the URBANITE-deploy repo root folder and add and commit the component (it is
always recommended to verify the changes before the commit). If everything is ok, push the
changes to the remote repo.

cd ..

cd ..

git add git/[component_name]

git status

git commit -m "updates ui"

git push –set-upstream origin update/ui_001

As soon as you push the new branch, a pipeline will be fired in the integration environment. This
pipeline builds, runs, tests and destroys the entire URBANITE platform to make sure that the
components can be built and comply with the automated tests. You can check the progress and
the result of the pipeline at https://git.code.tecnalia.com/URBANITE/private/URBANITE-
deploy/-/pipelines.

Figure 9. Stages and jobs in the pipeline of any branch.

The push returns a message with a URL to create a request to merge the new branch in the
develop branch. For this, start a browser and paste that URL. Alternatively, in Windows
command line interface (cmd), you can issue the following command:

start chrome [URL]

You will be allowed to merge if the pipeline was correct. Check the messages and, if all is OK,
merge the new branch into develop. That will start a new pipeline in the integration
environment.

Figure 10. Stages in the pipeline in the “develop” branch.

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 46

This pipeline builds, runs and tests the entire URBANITE platform but, in contrast to the previous
pipeline, it leaves the platform alive, allowing you to perform additional manual tests. The
environment can be accessed through the GitLab GUI, in Operations > Environments.

Figure 11. The “develop” and “master” environments.

To finish, you should inform those affected by the change, either by sending an email or by other
means.

EXPECTED OUTCOME:

An updated integration environment (in the case of the example, accessible at the following
address: https://URBANITE.esilab.org:8443/ui/).

3.1.1.2 Debugging a component deployment

The objective of this procedure is to support the development team to debug and fix issues during
the release of their work into the integration environment (for example, if during the previous
procedure -“Upgrading a component in integration environment”- the pipeline fails at some
point) or even once the containers have been successfully deployed (for example, when some
issue is found during the interactive testing).

Figure 12. Failure -in “Test” stage- in the pipeline.

REQUIRED:

Internet connection, Portainer.

PROCEDURE:

There are different mechanisms to support the development team in the debugging of issues in
the assets running in the integration environment: continuous integration logs, container logs,
container status, container command line.

Continuous integration logs are those gathered from the GitLab runners while executing the
continuous integration steps. They are accessible in URBANITE deploy project at GitLab, more
specifically in the pipelines section (CI/CD > Pipelines). They are relevant when the pipeline fails.

https://urbanite.esilab.org:8443/ui/

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 46

When this occurs, we usually receive an email from the GitLab platform warning us about the
problem.

Figure 13. Pipeline page.

On the pipelines page we can see those that have failed. In failed ones, we can check the detail
or the pipeline by clicking at the pipeline id.

Figure 14. Pipeline ID to access the details.

That will bring us to the detail of the pipeline stages execution.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 46

Figure 15. Details page of a pipeline.

You can click on each of the stages to access its details. But beware that job logs are erased
periodically (every two months).

Figure 16. Details of a job that has been erased.

A stage with content would look like the following one.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 22 of 46

Figure 17. Details of a job.

Another mechanism is the container status checking. To check the status of each container in
the different container stacks in the integration environment, a Portainer server is provided. The
URL of URBANITE Portainer is: https://URBANITE.esilab.org:8443/Portainer/. It is also possible
to filter by stack if we are interested in doing so:

https://urbanite.esilab.org:8443/portainer/

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 23 of 46

Figure 18. Portainer, stacks list.

The naming approach followed with containers indicates (i) the stack they belong to and (ii) the
name of the container. In this case, there are three stacks:

• URBANITE-develop: stack that runs the latest commit at the develop branch.

• URBANITE-master: stack that runs the latest commit at the master branch.

• URBANITE-any-branch: stack that runs the rest of branches as soon as they are pushed.

Figure 19. Portainer, container list.

We can then access the details of each container, clicking its name.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 24 of 46

Figure 20. Portainer, container details.

In the container details, we can see information about the variables, the labels, the networks or
the volumes. Besides, we have access to the container logs and console, which is useful in the
odd case that a deployment error takes place during the testing phase of the deployment
(container logs show the same output as issuing the “docker logs -f” command at the
command line).

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 25 of 46

Figure 21. Portainer, container logs.

Container console gives us access to the terminal at the container. As in the command line, you
must specify how to access the shell (as it varies depending on the container base: sh, bash,
ash…) and you can also specify the user (usually root).

Figure 22. Portainer, accessing container console.

Once we choose the right command, we get access to the container console:

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 26 of 46

Figure 23. Portainer, container console.

Within the console, we can issue most of the command that we can use in a regular shell. We
can install tools, create, edit, read and delete files, etc. It is useful for several purposes like
checking connectivity, checking stored data, checking those logs that are not thrown to console
but stored in files, or checking configuration files.

Take into account that there are some commands, such as reboot or device related commands,
that are limited by the nature of the docker container technology. For example, in order to
reboot a container, the alternative will be to “Restart” the container from the Portainer console.

Figure 24. Portainer, actions on containers.

3.1.1.3 Creating an issue

The objective of this procedure is to provide feedback to other development team about some
issue at development or integration.

REQUIRED:

Internet connection.

PROCEDURE:

Go to the URBANITE GitLab group https://git.code.tecnalia.com/groups/URBANITE/-/issues, and
open an issue. We create an issue associated with the project (repository) associated. The
assignment can be adjusted afterwards; therefore, in case it is not clear, you can assign the issue
to URBANITE-deploy.

https://git.code.tecnalia.com/groups/urbanite/-/issues

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 27 of 46

Figure 25. Portainer, selecting project to create an issue.

When we choose the target project the creation button changes to reflect that selection.

Figure 26. Portainer, creating an issue.

Once created, the issue submit dialog will open. We can fill the relevant fields and label it as
“new” so that we can identify it during the planning meetings to discuss, complete, prioritize
and schedule appropriately.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 28 of 46

Figure 27. Portainer, new issue details.

EXPECTED OUTCOME:

A new issue in the GitLab URBANITE group to be discussed during the planification meetings.

3.1.2 Release responsible

The release responsible oversees managing, planning, scheduling, and controlling software
delivery. The releases will be focused mainly on the project pilots, but there can be other
releases related with project milestones, meetings, reviews, etc.

[NOTE: Some procedures performed by the Release responsible in the master environment -
e.g., debugging a component, creating an issue- are so equivalent to those followed by
developers in the development environment that we decided not to repeat them here.]

3.1.2.1 Promoting a component to Master

The objective of this procedure is to promote the “develop” environment to “master”. The master
branch holds snapshots of the develop branch. These snapshots can be created in response to
different needs: an internal review, a meeting, a milestone, a release, a fix, etc.

REQUIRED:

Internet connection, Git client.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 29 of 46

PROCEDURE:

It is assumed that the quality of the component to be promoted has been validated with the
required tests that can involve using additional endpoints like REST APIs, message queues,
databases, etc.

First of all, communicate to the project team that a component release is going to be fixed. This
implies that, during the process, merge requests to the develop branch may be constrained. For
this, a repo maintainer should temporarily restrict merging, modifying the branch configuration
(https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-/settings/repository).

Figure 28. GitLab, branch configuration.

A merge request has to be issued from the develop branch. The merge request will clone the
develop branch status in the master branch. To do so first, we update the develop branch and
all their submodules.

cd URBANITE-deploy

git checkout develop

git pull

git submodule update

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/repository

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 30 of 46

Once updated the develop branch, we switch to the master branch and reset it to the status of
the develop branch.

git checkout master

git reset --hard develop

Make sure that master is equal to the current develop branch, using the command diff.

git diff develop

This should give no differences. Finally, upload the changes back to the remote repository.

git push

This will start the master pipeline in GitLab.

Figure 29. GitLab, “master” pipeline.

This pipeline is in charge of updating the master environment that, once finished, will be
accessible in our example at https://URBANITE.esilab.org/ui/.

EXPECTED OUTCOME:

A new version of the master environment.

3.1.2.2 Release packaging for sharing

The objective of this procedure is to take a given master commit and generate a release for
sharing with other parties, mainly pilots.

[NOTE: this procedure is subject to be improved by extending the continuous integration in the
future.]

REQUIRED:

Internet connection, SSH access to the server.

PROCEDURE:

This procedure can be done from the server using SSH or using Portainer. We will describe first
the procedure with the SSH and later the same process using Portainer.

With SSH, access to the server. Once inside, log into the repository (in our case an Artifactory
repository).

docker login optima-URBANITE-docker-dev.artifact.tecnalia.com

The next step is to identify the images. To do so, we need to get the latest images

docker images | master

https://urbanite.esilab.org/ui/

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 31 of 46

We retag those images with a release version (e.g., v01)

docker tag optima-URBANITE-

docker.artifact.tecnalia.com/URBANITE/frontend:master optima-URBANITE-

docker.artifact.tecnalia.com/URBANITE/frontend:v01

and push them to the registry

docker push optima-URBANITE-

docker.artifact.tecnalia.com/URBANITE/frontend:v01

With Portainer, we first need to make sure that we have registered the Artifactory registry in
Portainer (check at https://URBANITE.esilab.org:8443/Portainer/#/registries).

Figure 30. Portainer, adding a register.

https://urbanite.esilab.org:8443/Portainer/#/registries

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 32 of 46

Figure 31. Portainer, registry details.

To publish an image, first, we find the image

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 33 of 46

Figure 32. Portainer, image list.

Once we are in the image details, we can tag the image

Figure 33. Portainer, creating an issue.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 34 of 46

Once tagged, we can upload the image to the registry

Figure 34. Portainer, image details.

To finish, independently of the procedure followed, we can find the image in the Artifactory (for
example, https://artifact.tecnalia.com/ui/repos/tree/General/optima-URBANITE-docker-
dev%2FURBANITE%2Ffrontend).

Figure 35. Artifactory.

EXPECTED OUTCOME:

A set of docker images, with the version number, in the Artifactory.

3.1.3 Pilot responsible

The Pilot Responsible is in charge of managing, planning, scheduling, and controlling software
delivery towards the project pilots.

[NOTE: Some procedures performed by the pilot responsible in the master environment -e.g.,
debugging a component, creating an issue- are so equivalent to those followed by developers in
the development environment that we consider not to repeat them here.]

3.1.3.1 Deploying/Updating a release to Pilots

The objective of this process is to instantiate the URBANITE platform/update the platform to new
versions in the pilots.

https://artifact.tecnalia.com/ui/repos/tree/General/optima-urbanite-docker-dev%2Furbanite%2Ffrontend
https://artifact.tecnalia.com/ui/repos/tree/General/optima-urbanite-docker-dev%2Furbanite%2Ffrontend

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 35 of 46

[NOTE: This procedure covers the simplest scenario, where migrating the data structures to new
schemas is not required. In case a data transformation is needed, a more complex, ad-hoc
procedure with the close support of the integrator and the development team will be needed.]

REQUIRED:

Internet connection, a Linux server with a domain configured in a DNS, Git client, Docker server
and CLI, Docker compose CLI.

PROCEDURE:

Clone the URBANITE-deploy repository (for a deploy, only needed the first time), or simply pull
it (for an update, in case it has been already downloaded).

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

deploy

cd URBANITE-deploy

git pull

Next, edit the environment file (.env, in the root folder) to configure the system according to the
specificities of the pilot. These can be details like:

• Version to deploy

• Details of external services to use, if any

• Credentials, if required

• The domain name

• Location of persistent storage in case it is configurable

vi .env

Once the repo has been downloaded and configured, we force the download of the images of
the docker compose:

export COMPOSE_FILE=docker-compose.yaml:docker-compose-

expose.yaml:docker-compose-redirect-http.yaml

docker-compose pull

Once the images are downloaded, we run the docker compose:

export COMPOSE_FILE=docker-compose.yaml:docker-compose-

expose.yaml:docker-compose-redirect-http.yaml

docker-compose up -d

This should produce a pilot platform instance up and running. You can check it accessing to the
corresponding URL.

EXPECTED OUTCOME:

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 36 of 46

An instance of the URBANITE platform running in the pilot.

3.2 Maintenance procedures

This section describes the procedures for the Integrator and the Maintenance responsible roles.
A separate section will be provided for each of these roles.

3.2.1 Integrator

3.2.1.1 Component integration/update

The objective of this activity is to add an additional component to the URBANITE platform or
update it afterwards.

[NOTE: The procedure for updating a component is very similar, only excepting the steps to
include additional submodules and dockerfile definition (because they should be included since
the first integration of the component).]

REQUIRED:

Internet connection, Git client software, Docker CLI, Docker compose.

PROCEDURE:

Download the URBANITE-deploy repo (with “clone”) or, in the case is already downloaded,
update it (with “pull”).

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

deploy

cd URBANITE-deploy

git pull --recurse-submodules

(- - Only-first-integration - -)

Next step differs, depending on if the component to be added contains the docker container
definition or not:

a) Component with Dockerfile: Add it as a submodule under the git folder.

git checkout develop

git pull --recurse-submodules

git checkout -b feature/integrate_[component_name]

git submodule add [url_of_the_repo] git/[component_name]

b) Component without Dockerfile:

1. Create the subfolder for the component, and
2. Add the source under git/[component_name]/source

mkdir git/[component_name]
explorer .
(copy the source files)

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 37 of 46

3. Together with the developers of that component, design the dockerfile. This may
involve adding additional components.

vi git/[component_name]/Dockerfile

Besides, we can edit the .gitmodules file of the URBANITE-deploy repository to make the repo
relative, if the domain of the repository is the same.

vi .gitmodules

For example, in the case a), the addition to the file should be:

[submodule "git/[component_name]"]
 path = git/[component_name]

 url = ../ [component_name].git

 (- - End-first-integration - -)

Together with the development team, we need to identify all the configuration parameters, the
endpoints and the persistence requirements. The configuration parameters include parameters
to be modified in each pilot or platform instance and parameters oriented to the integration
with other components. The first ones should be placed in the .env file, while the others can be
placed in the docker-compose file directly. We add the docker-compose configuration in the
main docker-compose file.

vi docker-compose.yml

And we include the default values for the environment parameters at .env file

vi .env

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 38 of 46

We can also include a testing component to verify that the deployed component is working
properly. This component should be implemented together with the development team. This
component will be placed in a different file.

vi docker-compose-tests.yml

The resulting configuration can be tested locally.

NOTE: we can customize environment variables to test different configurations: master, develop
or any-branch. For example, for master:

export URBANITE_VERSION=master

export SERVER_HOST=URBANITE.localhost

export HTTPS_PORT=443

export COMPOSE_FILE=docker-compose.yaml:docker-compose-

expose.yaml:docker-compose-redirect-http.yaml

docker-compose build

docker-compose up -d

EXPECTED OUTCOME:

A new component/updated component in the URBANITE platform.

3.2.1.2 Component removal

The objective of this procedure is to remove a component from the URBANITE platform. This is
achieved by removing the submodule and updating the dockerfile to delete all its references. This
may also require modifying the tests.

REQUIRED:

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 39 of 46

Internet connection, Git client, Docker CLI, Docker compose.

PROCEDURE:

Download the URBANITE deploy repo, or update in case it is already downloaded

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

deploy

cd URBANITE-deploy

git pull

Delete the relevant section from the .gitmodules file.

vi .gitmodules

Stage the .gitmodules changes

git add .gitmodules

Delete the relevant section from .git/config.

vi .git/config

Run git rm --cached path_to_submodule (no trailing slash).

git rm –cached git/frontend

Run rm -rf .git/modules/path_to_submodule (no trailing slash). Commit the changes.

rm -rf .git/modules/ path_to_submodule

git commit -m "Removed submodule "

Delete the now untracked submodule files rm -rf path_to_submodule (in our example,
“frontend”)

rm –rf git/frontend

Remove the relevant sections from docker-compose and .env

vi docker-compose.yml

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 40 of 46

vi .env

We can also be required to adjust tests.

vi docker-compose-tests.yml

The resulting configuration can be tested locally.

NOTE: we can customize environment variables to test different configurations: master, develop
or any-branch. For example, for master:

export URBANITE_VERSION=master

export SERVER_HOST=URBANITE.localhost

export HTTPS_PORT=443

export COMPOSE_FILE=docker-compose.yaml:docker-compose-

expose.yaml:docker-compose-redirect-http.yaml

docker-compose build

docker-compose up -d

EXPECTED OUTCOME:

Running URBANITE platform without the deleted component.

3.2.1.3 Environment migration

The objective is to migrate the integration environment to a different server. This implies
installing the required CI/CD tools in the new server and install and configure there a runner.

REQUIRED:

Internet connection, a new Linux server.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 41 of 46

PROCEDURE:

Login into the server and install Git, Docker and Docker-compose. Then, download a dockerized
runner configured for URBANITE by cloning the prepared repository in the URBANITE GitLab.

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

gitlab-runner-deploy.git

cd URBANITE-gitlab-runner-deploy

In GitLab, go to the URBANITE-deploy project and check the runner registration code (in Settings
> CI/CD > Runners, https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-
/settings/ci_cd).

Figure 36. GitLab, runners.

On the server, configure the registration code and the registration tags in Linux environment
variables (REGISTRATION_TOKEN and REGISTRATION_TAGS respectively), and launch the
following docker-compose order to install and run the runner’s docker:

export REGISTRATION_TOKEN=rzGjy62AYCmKHP8AHR5a

export REGISTRATION_TAGS= any-branch,develop,docker,docker-

compose,master,URBANITE,CHANGE_THIS_TO_IDENTIFY_THE_SERVER

docker-compose up -d

After that, configure the domain to point to the new server. This can imply either:

a) the creation of a new domain and pointing it to the new server (This implies adjusting
the “SERVER_HOST” variable of the URBANITE-deploy project.)

https://git.code.tecnalia.com/urbanite/private/urbanite-gitlab-runner-deploy.git
https://git.code.tecnalia.com/urbanite/private/urbanite-gitlab-runner-deploy.git
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 42 of 46

b) changing the IP to which the old domain is pointing to the IP of the new server.

Figure 37. GitLab, variables.

If we want, we can force the pipeline to run, and build and deploy the system
(https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-/pipelines)

Figure 38. GitLab, forcing a pipeline to run.

Once the new runner is active, we can remove the old one

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 43 of 46

Figure 39. Portainer, removing a runner.

EXPECTED OUTCOME:

A running runner and a new integration environment that will be waiting for the pipelines from
GitLab.

3.2.1.4 Version control system migration

The objective is to migrate the version control system from the Tecnalia GitLab to another one.

REQUIRED:

Internet connection, Git client.

PROCEDURE:

The procedure is not exhaustive, because it heavily depends on the new system. And if the new
system is GitLab based or not. If not, it implies changing the continuous integration procedure.

The first step is to decide the new system to be used. In case it is a service, formalize the contract;
In case it is software, install it on a server.

The next step is to migrate the repos to the new system.

Then we need to configure the continuous integration. If it is GitLab, we only have to configure
it as we have done previously the original system. If it is not GitLab, then we will have to identify
the new CI system: Jenkins, circle-ci, etc. Some will imply to contract a service; others will imply
to install the selected software in new resources. Then, we will need to migrate the gitlab-ci.yml
to the new system syntax and approach.

Finally, we need to communicate to the consortium the new repositories URL.

EXPECTED OUTCOME:

A new version control system running and setup along the project.

3.2.2 Maintenance responsible

3.2.2.1 Server monitoring

The objective is to verify that the server(s) supporting the integration environments is not running
out of computing resources.

REQUIRED:

Internet connection, SSH client.

PROCEDURE:

Login into the server, and once inside, check the storage, the memory and the processing.

EXPECTED OUTCOME:

Stable server.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 44 of 46

3.2.2.2 Endpoints checking

The objective of this procedure is to verify that the platform endpoints are responding.

REQUIRED:

Internet connection.

PROCEDURE:

Check the list of endpoints using the script that will be provided by the integrator.

EXPECTED OUTCOME:

Evidence that the services in the platform are running.

3.2.2.3 Containers monitoring

The objective of this procedure is to check that the containers of the platform are running.

REQUIRED:

Internet connection, SSH client.

PROCEDURE:

Login into the server, and once inside, check the storage.

docker ps

EXPECTED OUTCOME:

Evidence that the containers of the platform are running.

4 Conclusions

Tecnalia, who leads Task 5.3 - Continuous Integration and DevOps approach, provides the
DevOps infrastructure and is in charge of setting up the tools and managing the tasks during the
integration tasks in URBANITE.

The DevOps infrastructure has been established during the first year of the project. It is
described in the document, listing the different tools that compose it, how they are organized
and configured to manage the development, integration, and validation stages of the software
components to be implemented during the life cycle of the project.

The version control is based on the GitLab tool, with separate environments for development,
integration and pilots. Regarding integration and validation, GitLab CI/CD is the tool selected to
manage the deployment of the components, whereas Docker is the container technology used
to achieve hardware independence.

The provided infrastructure itself is necessary but not enough. Without the procedures and rules
that the user must perform to carry out the tasks, it would not be useful. So, the second part of
the document presents the most habitual procedures that allow the users of the infrastructure
–e.g. developer, integrator, infrastructure maintainer or pilot responsible- to manage the

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 45 of 46

DevOps tasks. These procedures have been explained, providing examples and code/command
snippets to clarify the details when needed. The procedures have been grouped by role. Five
roles have been defined, and more than twenty procedures are described to cover the full
software life cycle.

The infrastructure provided, here described, along with the associated documentation provided,
is expected to allow the adequate and fruitful delivery of the URBANITE software components
and help to its deployment in the pilot sites.

D5.6 – URBANITE DevOps infrastructure Version 1.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 46 of 46

5 References

[1] URBANITE consortium, «D5.3 Integration strategy,» 2019.

[2] GitLab, «GitLab,» [En línea]. Available: https://about.gitlab.com/. [Último acceso: July
2020].

[3] Git, "Git," [Online]. Available: https://git-scm.com/.

[4] «GitLab issues,» [En línea]. Available:
https://docs.gitlab.com/13.0/ee/user/project/issues/. [Último acceso: July 2020].

[5] URBANITE Consortium, "URBANITE Annex 1 - Description of Action," 2019.

[6] GitLab, «GitLab CI/CD,» [En línea]. Available: https://docs.gitlab.com/ee/ci/. [Último
acceso: 09 03 2021].

