D5.6 — URBANITE DevOps infrastructure Version 1.0 - Finﬂa & AT Yo 184 - 31082021

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D5.6
URBANITE DevOps infrastructure

Editor(s): Ifaki Etxaniz, Gorka Benguria

Responsible Partner: Tecnalia

Status-Version: Final —v1.0

Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 1 of 46

D5.6 — URBANITE DevOps infrastructure

Version 1.0 — Final. Date: 31.03.2021

Distribution level (CO, PU): PU
Project Number: GA 870338
Project Title: URBANITE

Title of Deliverable:

URBANITE DevOps infraestructura

Due Date of Delivery to the EC:

31/03/2021

Work package responsible for the
Deliverable:

WPS5 - URBANITE ecosystem integration and DevOps

Editor(s):

Tecnalia

Contributor(s):

Ifiaki Etxaniz (Tecnalia),
Gorka Benguria (Tecnalia)

Reviewer(s):

Giuseppe Ciulla (ENG)

Approved by:

All Partners

Recommended/mandatory
readers:

Mandatory: WP3, WP4
Recommended: WP6

Abstract:

This document describes the deliverable D5.6, that is
composed by an infrastructure and a set of software
tools and procedures to support the continuous
integration, delivery and deployment in the project.

Keyword List:

Development environment, integration, testing,
deployment, devops, container, git.

Licensing information:

This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

The document itself is delivered as a description for the
European Commission about the released software, so
it is not public.

Disclaimer

This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu
Page 2 of 46

http://creativecommons.org/licenses/by-sa/3.0/

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Document Description

Document Revision History

_ Modification Reason Modified by

v0.1 15/01/2021 Table of contents defined Tecnalia
v0.2 25/01/21 First draft version Tecnalia
v0.3 10/02/21 Docker section added Tecnalia
V0.4 15/02/21 DevOps procedures added Tecnalia
v0.5 26/02/21 Conclusion and Executive Summary Tecnalia
V0.6 10/03/21 GitLab CI/CD updated, ready for Tecnalia
internal review
V0.7 17/03/21 Internally reviewed Engineering
V1.0 30/03/2021 Ready for submission Tecnalia
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 3 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Table of Contents

Table Of CONETENES ..ottt sttt et e bt e sbe e saee st sab e e b e e beennees 4
[y o 7= (U <SPt 5
LIST OF TabIES ..ttt ettt e st eae e e st e e s bt e e s b e e sbt e e aneeesbeeenareea 6
Terms and ABDreViatioNns ...t e s e e e 6
EXECUTIVE SUMIMIAIY ittt e et e e e et e s e s e e e e e s eeeaeaeeesesesesenens 7
R [{4 oo [¥ ot i o] o RO TSP U TPV PPU PPN 8
11 About this deliverableoo i e 8
1.2 DOCUMENT STFUCTUNE ...ttt e e 8

D oAV 0 T o 1 1 =1 L=V o] o SRS 8
21 GIEIAD 1.t reen 9
2.1.1 Yo RNV LR =] o Yo 1Y 1 1] o PR 9
2.1.2 Development trackingo e 11

2.2 GILAD CI/CD ettt ettt ettt ettt et et e st e e tb e e abeebe e baesbaestbesabesabeeabeenbaenseenseas 12
221 BIanCRES ... ettt sbe ettt 12
2.2.2 [T 01T LT o SRR 13
223 RUNNEBES oot e s re e e e e e 14

23 DIOCKET <.ttt ettt ettt et ettt et e s bt e bt e st e e bt e st e e s be e e sabeesabeeebeeesabaeeaeean 14
23.1 (o] =T o1 PP P PP TSPP 14
2.3.2 F AN = o] oY SR 15

N oAV @ T o 1Y o] o Yol Te [N Y-SR 16
3.1 (0] o1 =N o] oI o] foTol=To [0 =TSP 16
3.1.1 [BLEIVZ] FoT o] a o [=Y N ok d=T [4 RSP SPP 17
3.1.1.1 Upgrading a component in integration environment..........ccccccveeeeeeeecnnnnnnn. 17
3.1.1.2 Debugging a component deployment..........ccccvereeciiiieeciiee e e 19
3.1.1.3 Creating @n iSSUE ..uuuucceccieicieiceec e s 26

3.1.2 Release responSible.........uii i e 28
3.1.2.1 Promoting a component t0 Master......ccccuiiiiiiiiiiiiiiiieeee e 28
3.1.2.2 Release packaging for sSharing........cccceeeciiiecciiie e e 30

3.13 Pilot reSPONSIDIEeiieeiee e et 34
3.1.3.1 Deploying/Updating a release to Pilots.........ccccceevreenieenienieccre e, 34

3.2 Y Yol a=T oo g Yol ol o] e Yol <Te [F] o <SR 36
3.2.1 LN =Y = = | oY 36
3.2.1.1 Component integration/uUpdate........cccceeecreeeeeeceieeceeeeetee et 36
3.2.1.2 Component reMOVAlccecicieiciiiieeee et e e e e e e e 38
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 4 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

3.2.1.3 Environment Migration ... s 40
3.2.1.4 Version control system migrationccccccceeireiiiieiriiiieeeeiiiee e 43

3.2.2 Maintenance reSPONSIDIE........uii i 43
20720 20 N =T o V=T ol 4 0 T 1 o 1 = 43
3.2.2.2 ENdpoints ChECKING......cccciiiiieiie e e 44
3.2.2.3 Containers MONITOMING ..ccciiieiiiiiiiieeee ettt e et e e e eirree e e e e e s s saneneeeas 44

A CONCIUSIONS eniiiieiiee ettt ettt ettt ettt e st e ettt e st e e s bt e e s bt e s beeesateesabeeesabeesabeeeneeesabeessnseenns 44
D REIEIENCES .ttt rees 46

List of Figures

FIGURE 1. THE THREE ENVIRONMENTS IN URBANITE. .oooiiiiiitieeeee ettt eevaveeeee e e 9
FIGURE 2. PRIVATE AND PUBLIC GITLAB REPOSITORIES OF URBANITE.evvviieieeeiieciiieeeeeec e 10
FIGURE 3. PRIVATE GITLAB REPOSITORY OF URBANITE, ORGANIZED BY WORK PACKAGES.ccceevvvvvrrreennn. 11
FIGURE 4. THE TWO BRANCHES IN THE INTEGRATION REPOSITORY ..vvveieeiieeerrreereeeeeeesinrrreeeeeeeeeennssssereseseenns 12
FIGURE 5. GRAPH VIEW OF THE BRANCHES IN THE INTEGRATION REPOSITORY ...evvvieeeiiirvrereeeeeeeeinverereeeeeenns 13
FIGURE 6. SOME PIPELINES IN THE INTEGRATION REPOSITORYuvvvvereeeeeiiirrrereeeeeeeeiissrereeeseeesnssssseseseseens 14
FIGURE 7. PORTAINER: VIEW OF THE URBANITE-DEVELOP STACK OF CONTAINERS......uvvverrreeeeeeinrrrereeeeeenns 15
FIGURE 8. ARTIFACTORY FOR THE URBANITE PROJECT. oeeeeieeerreeeeeeeeeieirnrereeeeeeeenesnreeeeeeeeessnssseseeeseeens 16
FIGURE 9. STAGES AND JOBS IN THE PIPELINE OF ANY BRANCH. ...eevvvrerrrerereeeeeeereeeeeeeeereeeeeeesesesresssssseseseeees 18
FIGURE 10. STAGES IN THE PIPELINE IN THE “DEVELOP” BRANCH......ctvvvevereeerererereeeeeeeereeeeeesesereeessesseseseeees 18
FIGURE 11. THE “DEVELOP” AND “MASTER” ENVIRONMENTS. ..evvvvrerrrerererreerereeeeeeererreesesesesessssessssesesesees 19
FIGURE 12. FAILURE =IN “TEST” STAGE= IN THE PIPELINE. vvevvvvvereerrererereeeeeerrerereseeeeeseseessesesssssssssssssssssssees 19
FIGURE 13, PIPELINE PAGE. «uuvvrerereeeeeiiitrrereeeeeeesiissseeeseeesssssssssssesesssmssssssssssesssmsssssssssesessssnssssssseesesns 20
FIGURE 14. PIPELINE ID TO ACCESS THE DETAILS. 1uutevuteeretueeertrnneeresnneeresneeeesssneessssneeesssnneesssseessssnneesess 20
FIGURE 15. DETAILS PAGE OF A PIPELINE. evuueetttueerruueeeresneeeresnneesssneeessssneeesssneeesssnesesssnneesssssessssnneesens 21
FIGURE 16. DETAILS OF A JOB THAT HAS BEEN ERASED. ..eeeieeeeeiurrreeeeeeeeinirnrrreeeseeesssssrsseeesessssssssssseeseens 21
FIGURE 17. DETAILS OF AJOB. vrvveteeeeeiiittrereeeeeeesiitrreeeseeesssaissssssesesssmsasssssssesesesssssssssssssssssssssssssssesesns 22
FIGURE 18. PORTAINER, STACKS LIST..cuuuttrereeeeeeesiiurrreeeeeeesssssnrsseeesesesnnssssssssssesesmssssssssssesssssssssssseseses 23
FIGURE 19. PORTAINER, CONTAINER LIST.uuuvrriieiieiiiurrerereeeeieessnreeereseeesessssesseesesssmsssssesesesssssmssssssseseseses 23
FIGURE 20. PORTAINER, CONTAINER DETAILS. .eeeeeeurrreeeeeeeeeesiureeeeeeeeeseessresereseesssssssresesesssssnssssssseseseses 24
FIGURE 21. PORTAINER, CONTAINER LOGS. vvvvveeeieeiurrreereeeeeeeessseseeeeeeesesssssesseeseesssssssresesesssssmssssssseseseses 25
FIGURE 22. PORTAINER, ACCESSING CONTAINER CONSOLE.uuuurerereeeeiieirnrerreeeeeesessrrereeeeesesnnssseeeeeseees 25
FIGURE 23. PORTAINER, CONTAINER CONSOLE. cceeuuvvrrrrreeeeeeeisnreeeeeeeeesesssresseeseesssssssresesesesesnssssssseseseses 26
FIGURE 24. PORTAINER, ACTIONS ON CONTAINERS. «..vvvvrrieeeieeitrrerereeeeeeeesnreerreseeesnssssresesesesesnssssseseseseses 26
FIGURE 25. PORTAINER, SELECTING PROJECT TO CREATE AN ISSUE. wevvviiiieerireeereeeeeseisrreeeeeeeeessnneneeeeesesens 27
FIGURE 26. PORTAINER, CREATING AN ISSUE. ...eeieieuvrrrereeeeeieeiureeeeeeeeeseessreseeeseesssssssresesesssssnssssseseseseses 27
FIGURE 27. PORTAINER, NEW ISSUE DETAILS. veeeeeeeeureeereeeeeresisnreeeeeeeeesesssseseressssssssssseseeessssssssssssseeesesns 28
FIGURE 28. GITLAB, BRANCH CONFIGURATION. ..uuuuvvrerireeeeieessreeeeeeeeessssssesrresesssssssresesesssssmsssseseeeseses 29
FIGURE 29. GITLAB, “MASTER” PIPELINE. vvvvvvvvrverereeereeereeeeeeeeeeeeeeeeeeeeeeereesesereeseesseseressssssesssrsreresseseeeeee 30
FIGURE 30. PORTAINER, ADDING A REGISTER....cccetiurrrerereeeeesiurrreeeseeeessnnrssseeseeesmnsssssssesesssnsssssssseseses 31
FIGURE 31. PORTAINER, REGISTRY DETAILS. vevveeeeeiiiurrreeeeeeeeeninrrreeeeeeeennnnresseeseeesmsssrssseesesssnnssssssseseses 32
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 5 of 46

D5.6 — URBANITE DevOps infrastructure

Version 1.0 — Final. Date: 31.03.2021

FIGURE 32. PORTAINER, IMAGE LIST. ..ecuviviiueiriitieteeeeeseeseessessesesssstessessessessesssssssssssssssssssessessessessessanes 33
FIGURE 33. PORTAINER, CREATING AN ISSUE. ...veuviuveevieeeseeseeseessereessaseseessessessessessesssssssessessessessesssssessenes 33
FIGURE 34. PORTAINER, IMAGE DETAILS. ...ve.veviviteseeessesseseessesesssasessessessessessassessssssssssesssssessensensensones 34
FIGURE 35. ARTIFACTORY. .vuviuveeteueeseeseeseeseeseesessessesessessessessesesssssessessessensessassessesssssssessessesensensessanes 34
FIGURE 36. GITLAB, RUNNERS.veuveutiueeseeteeseesestessesessessessessesssssssessessessessessessesssssessssessessessensessensanes 41
FIGURE 37. GITLAB, VARIABLES.vvvevtieeeteeteeteeeeeteesesessessessessesssssssessessessessessessessssesssssessessesensessensanes 42
FIGURE 38. GITLAB, FORCING A PIPELINE TO RUN.....cuviuveueeererierrereeeesseeeseessessessessessesesssssessessesensessessanes 42
FIGURE 39. PORTAINER, REMOVING A RUNNER........evieeureeeereereereetesseseessessessessessesssssssessessessessessessessenes 43

List of Tables
NO TABLES
Terms and Abbreviations
Cl/cD Continuous Integration/Continuous Deployment
CLI Command-line interface
DevOps Development and Operation
DNS Domain Name System
DoW Description of Work
EC European Commission
GUI Graphical User Interface
KR Key Result
QA Quality Assurance
SCM Source Code Management
Sw Software
URL Uniform Resource Locator
WP Work Package

Project Title: URBANITE

Contract No. GA 870338

www.urbanite-project.eu

Page 6 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Executive Summary

The main key results of URBANITE are software-based components. To implement and manage
these components and construct the URBANITE ecosystem, a DevOps strategy and
infrastructure have been deployed. The strategy was described in a previous deliverable (D5.3).
The infrastructure that implements this strategy is the deliverable D5.6, which is described in
this companion document.

The document is delivered as a description of the released software infrastructure for the EU
Commission. Apart from that, it is intended that this document facilitates the partner’s
comprehension of the provided infrastructure and its use, and hence the work in the technical
work packages, during the development (WP2, WP3, WP4), integration, deployment (WP5) and
validation (WP6) in URBANITE. This deliverable is the result of Task 5.3 - Continuous Integration
and DevOps approach.

First, the project DevOps infrastructure that will be used for managing the development process
is presented, describing in detail the proposed supporting tools/technologies. The GitlLab,
provided by Tecnalia, will be used as a version control system, hosting both private and public
repositories. A microservice approach will be applied to integrate the outcomes of the different
development teams, prioritizing containerization technologies whenever possible. Docker will
be used as containerization technology for running the components. Besides, whenever possible
an applicable docker container will also take care of the building of the component. Container
orchestrations technologies will be used to specify how the containers are configured, including
details such as networking, storage, and scalability. The technology that we use for the
orchestration is docker-compose, as it requires less infrastructure and other technologies could
be adopted in the future such as Kubernetes if the pilots or the project evolution requires to do
so. Finally, GitLab CI/CD will be used to run the continuous integration scripts that automate the
deployment of some of the environments and their transitions. It greatly integrates with the
version control system (GitLab) and the delegation of the compiling of the components to docker
technology simplifies the integration making GitLab a practical and powerful solution.

Next, the procedures related to the DevOps approach are presented. These procedures are
organized in two categories operation procedures and maintenance procedures. The operation
procedures cover the interactions to generate, debug, test and improve the URBANITE platform
from the contribution of the different development teams. The maintenance procedures cover
the activities to deploy and maintain the DevOps platform in a healthy state.

The most important results of the DevOps methodology and integration tasks in URBANITE will
be the DevOps infrastructure (to be released in M12), described in this document and the
sequential-iterative URBANITE Ecosystem (M15 and following).

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 7 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

1 Introduction

1.1 About this deliverable

This report is a companion document of the deliverable D5.6 — URBANITE DevOps infrastructure,
that is composed by infrastructure, a set of software tools and procedures to support the
continuous integration, delivery and deployment in the project. The document itself is delivered
as a description of the released software for the European Commission.

The strategy to be followed in the integration of URBANITE ecosystem was already described in
deliverable D5.3 [1]. The current document explains how this strategy has been finally
implemented, provides more details about the infrastructure, which tools are being used, how
they are configured and managed, and the DevOps procedures used by the operators during the
integration.

This deliverable is a result of Task 5.3 - Continuous Integration and DevOps approach.

1.2 Document structure

The document is organized into three (3) main sections plus a conclusion chapter, with the first
section presenting the deliverable’s objective and structure.

The second section -DevOps Framework- describes the DevOps infrastructure that will be used
to support the software implementations in URBANITE, including the mechanism used to
continuously build, run, test and deploy the URBANITE platform from the items developed by
the different teams in the URBANITE project, the tools adopted and the technologies used.

The third section —DevOps Procedures- is devoted to the common activities carried out by the
users over the infrastructure, to integrate the different components of the URBANITE solution,
to dispose of the result to the pilots, to manage the feedback from the integration, etc. It will be
split into operational procedures and maintenance procedures. The operation procedures cover
the interactions to generate, debug, test and improve the URBANITE platform from the
contribution of the different development teams. The maintenance procedures cover the
activities to deploy and maintain the DevOps platform in a healthy state.

Finally, the conclusion section resumes the most relevant points of the document. The
document ends with the references and appendixes.

2 DevOps framework

The DevOps approach in URBANITE consists of several stages an application goes through, from
development to integration, delivery and production. DevOps integrates development and
operations, incorporating practices such as continuous delivery, continuous integration, and
collaboration.

The DevOps framework refers to the infrastructure and tools to be used internally to follow this
DevOps approach and finally ensure the successful integration of the different components of
the URBANITE solution.

In URBANITE, the DevOps approach will be structured in three environments, as depicted in
figure 1. These environments are development, integration and production or piloting.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 8 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Code f(x) & test Packages f(x) & test

X Gemeente
x Amsterdam

%

FORUM
VIRIUM
HELSINKI

Each partner 'Tecrialia - " age®
UCs

«®

Development Integration Pilots r

Environment Environment Environment ﬂ
|

Monitoringinformation

Testreports Integration test reports
User comments

Figure 1. The three environments in URBANITE.

e The Development environment is implemented by each work team behind each component
of the URBANITE solution. The technologies in the development environment largely depend
on the technologies used to implement the component as well as the background of that
team. Nevertheless, there are some common requirements at the development, the use of
REST (Open API) in defining the interfaces of components.

e The Integration environment focuses on compiling the code and performing the unit test
and integration test reports. This stage also includes the availability of a common storage
mechanism for the binaries created, as well as the assets required to deploy the applications
(e.g., configuration files, infrastructure-as-code files, deployment scripts).

e The Pilots environments are where the Use Case demos of URBANITE are deployed and
implemented. These environments are foreseen to be located under the control of the final
users, most probably into their premises.

The DevOps approach relies mainly in the Integration environment. The other two environments
defined in the project (development and pilots) can be mentioned but are not the main focus of
this document.

The DevOps approach in URBANITE is implemented using several interconnected tools: the
version control tool: GitLab; the continuous integration tool: GitLab Cl/CD; the containerization
and deployment tool for easier portability and reconstruction of the solution: Docker; and the
storage for binaries: Artifactory.

In the following sections of the chapter, the above-mentioned tools, and how they are organized
and configured in URBANITE, is briefly described. This description will provide the reader with
an overview of the framework, and will be followed by the description of more detailed
procedures to use the framework in chapter 3-DevOps procedures.

2.1 Gitlab

2.1.1 Software repository

The technical work packages of URBANITE will use GitLab [2] to manage source code and for
revision control. GitLab is a Web-based Git repository hosting service. It offers all the distributed

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 9 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

revision control and source code management (SCM) functionality of Git [3] and adds additional
proprietary features.

A source control tool helps store the code in different chains so one can see every change and
collaborate more efficiently by sharing those changes. Rather than waiting on change approval
boards before deploying to production, developers can improve code quality and throughput
with peer reviews done via pull requests. Pull requests tell the team about changes some
developer has pushed to a development branch in your repository. The team can then review
the proposed changes and discuss modifications before integrating them into the main code
line. Pull requests increase the quality of the software, which results in less bugs/incidents, and
faster development.

The URBANITE GitLab! is offered by Tecnalia, hosting private and public repositories.

e The private? repositories are used to host the initial stages of the different components
of the project until they are mature enough. The private repositories will also be used
to store the pilot-oriented specific source code and any proprietary implementations of
the partners that are not intended to be made public.

e Those components to be released under open source license will be deployed in the
pubic repositories, where they will be publicly available.

Projects ¥ Groups ¥ More ¥ ~ Search orjump to... Q D@ My E2» @~ “":‘ =

L L URBANITE

| i veeanmes o
o

Group [D: 1287 Leave group

URBANITE Project group. This group will contain the git repositories needed to manage the source code in the project

I
o Subgroups and projects Shared projects Archived projects Search by name Name
o
& > B P Private [Owner 2|2 Bba Qa4 &17
_m Public @
D P Public repository of the URBANITE EU project. * 0 4 months ago
Contract No. GA §70338 Web: www.urbanite-project.eu

Figure 2. Private and public GitLab repositories of URBANITE.

! https://git.code.tecnalia.com/urbanite
2 https://git.code.tecnalia.com/urbanite/private
3 https://git.code.tecnalia.com/urbanite/public

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 10 of 46

https://git.code.tecnalia.com/urbanite
https://git.code.tecnalia.com/urbanite/private
https://git.code.tecnalia.com/urbanite/public

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Projects ¥ Groups ¥ More v v Search or jump to... Q D@ My p» @ ..:l v

L URBA riva
p URBANITE > Private

a o pees -
[0

Group 1D: 1580 Leave group

I Subgroups and projects Shared projects Archived projects Search by name Mame
& ‘oW WP2 Social impact |E| Owner =2 | m a
WP2 Social impact of disruptive technologies u ! !
& 5w WP3 Data Management B Owner =2 & O: &
WP3 Data Management Platform 0 - !
o
WP4 Algorithms and simulation ﬁ Owner
> w = 5
B WP4 Algorithms and simulation techniques for decision-makers 7] oo Rz #as
WP5 Integration and DevOps B Owner
4 W c*
B WP5 URBANITE ecosystem integration and DevOps 2 Bo W odas
A T temporal & * 0 1 month ago
[U urbanite-deploy £ *0 4 months ago
» [l U urbanite-gitlab-runner-deploy (& *0 4 months ago

Figure 3. Private GitLab repository of URBANITE, organized by Work Packages.

2.1.2 Development tracking

GitLab issue tracker [4] is a tool for managing the development, for collaboratively developing
ideas, solving problems and planning work. Issues are always associated with a specific project
(repository), but if there are multiple projects in a group, one can also view all the reported
problems collectively at the group level. The issue tracker comes integrated with GitLab, the
source code management in use in the project

Issues will be used to track the status of feature proposals, bug reports, new code
implementations. Each issue in URBANITE includes the following attributes:

e Content: Title, Description

e People: Author, Assignee

e State: open/closed

e Planning and tracking: Milestone, Due date, Weight, Labels

Labels are part of issue boards and permits categorize issues using colours and descriptive titles,
and filter, manage and search the issues. In URBANITE the labels are going to be used to
categorize issues according to components and Use Cases. At the time of writing, these are the
labels foreseen:

e Component labels: Traffic simulation, Policy simulation & Validation, Recommendation
engine, Advanced visualization, Prediction, Correlation discovery, Data clustering, Data
projection, Self-organizing map, Controller, Data storage & retrieval, Data
fusion/aggregation, Data transformation, Data curation, Data preparation, Data
harvesting, Data anonymization

e Use Cases labels: Helsinki, Bilbao, Messina, Amsterdam

e Type labels: bug, suggestion, enhancement

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 11 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Milestones will be defined as initially planned in the URBANITE Proposal DoW [5], that is, at
months M15, M27 and M33.

2.2 GiLab CI/CD

Continuous integration is the practice of making frequent commits to a common source code
repository. It’s continuously integrating code changes into the existing code base so that any
conflicts between different developer’s code changes are quickly identified and relatively easy
to remediate. If, in addition, the build and test processes are automated, this notably increases
deployment efficiency.

In URBANITE, GitLab CI/CD [6] is used as the continuous integration and deployment tool. GitLab
CI/CD is naturally integrated in GitLab. The setup of GitLab CI/CD for projects hosted on GitLab
is easy since it uses the GitLab API for setting up hooks. GitLab CI/CD is a visual management
tool, so it can be used as an interactive and operational dashboard for release management.

The automation scripts needed to run the integration and deployment tasks are maintained in
Git, the source management tool, so that the integration tasks are included in the configuration
management. The elements that configure the URBANITE continuous integration and
deployment are listed below.

2.2.1 Branches

In URBANITE, the CI/CD is implemented in a (private) particular repository for integration:
URBANITE-deploy. Two branches are defined in URBANITE-deploy: develop & master.

L URBANITE » Private > urbanite-deploy > Repository > Branches

Overview Active Stale Al Filter by branch name

Protected branches can be managed in project settings.

Active branches

¥ deverop (220D () © (a8
< d1f52209 - Merge branch ‘gorka.benguria-develop-patch-74419 into ‘develop’ - 4 weeks ago =

Stale branches

e v O [t | e 5 [
o 328cFadd - Merge branch ‘feature/add_dev_port_to_traefil_dashboard' into ‘develop’ - 3 months ago 2

Figure 4. The two branches in the integration repository

Developers are allowed to commit and merge their code in develop branch (default). In the
master branch, however, only maintainers are allowed to merge. The master branch is destined
to contain the tested, verified releases.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 12 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

u Projects ¥ Groups ¥ More ¥ - [e] D= "~ =

Search or jump to...

. 1 URBA rivate > url -deploy
U urbanite-deploy URBANITE > Private > urbanite-deploy > Graph

LY Project overview develap

You can move around the graph by using the arrow keys.
B Repository

Git revision n [J Begin with the selected commit

Files

Commits <J"Isr‘gs branch 'gorka.benguria-develop-patch-74418"' into 'develop’

PRI Fix problem with redirection from https://urbanite.esilab.org:8443/ui to http://urbanite.esi
J"Ier‘ge branch 'feature/add_dev_port_to_traefil dashboard’ into ‘develop’

Tags

[:
restablises

Contributors J"Ier‘ge branch "feature/add dev_port_to traefil dashboard’ into 'develop”

Graph & removes host from dashboard rule
Compare J"Isr‘gs branch ‘feature/add_dev_port_to_traefil_dashboard’ intoc 'develop’
rsmu\les host from dashboard rule
O lssues 1 J"Ier‘ge branch 'feature/add_dev_port_to_traefil dashboard' into 'develop’

[s
T4 Merge Requests 6 adds port 8086 mapping

J"Ier‘ge branch ‘patch-1' into 'develop”
g Cl/CD Update .gitlab-ci.yml

« Collapse sidebar

J"Isr‘gs branch 'patch-1' into 'develop’

Figure 5. Graph view of the branches in the integration repository

2.2.2 Pipeline

Pipelines® are the top-level component of continuous integration, delivery, and deployment.
Pipelines comprise Jobs, which define what to do (e.g., compile or test), and Stages, which
define when to run the jobs (e.g., stages that run tests after stages that compile the code).
If any job in a stage fails, the next stage is not (usually) executed and the pipeline ends early.
If all jobs in a stage succeed, the pipeline moves on to the next stage.

In URBANITE, the pipeline is composed by 5 stages: build, deploy, tests, stop and debug. The
pipeline, as is standard in the tool, is defined in the .gitlab-ci.ymPF file. The pipeline is launched
when a merge is accepted and can be controlled and manipulated through a graphical interface.

L URBANITE » Private > urbanite-deploy > Pipelines
All 12 Finished Branches Tags Run Pipeline Clear Runner Caches Cl Lint
Filter pipelines | Q |
Status Pipeline Triggerer Commit Stages
#41791 V develop o d1fae289 - @ 00:00:12
ed (») > v
Iatest ﬂ @ Merge branch ‘gorka.benguria-d... @ @ @ z & 4 weeks ago
¥ gorka.bengur.. -¢-1374a5¢2 @ 00:00:19
assed #41790
“ @ fix problem with redirection fro... @ @ @ @ B8 4 weeks ago
¥ patch-1 -c- 52948549 & 00:00:14
ed #368582
@ & Update gitlab-ciyml OIOIO0) B 3 months ago
¥ develop - 328cfadd @ 00:00:10
assed #36881 ») > v
ﬂ) Merge branch “feature/add_dev._... @ @ @ - & 3 months ago

4 https://docs.gitlab.com/ee/ci/pipelines/
5 In GitLab CI/CD, a gitlab-ci.yml file, in the root of the repository, contains the CI/CD configuration.

Project Title: URBANITE

Page 13 of 46

Contract No. GA 870338
www.urbanite-project.eu

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Figure 6. Some pipelines in the integration repository

The pipeline tasks are based in docker-compose, and are defined and distributed in different
yaml files, which are called from the gitlab-ci.yml attending the branch in use and the task to be
performed.

2.2.3 Runners

A runner is a process that picks up and executes jobs of the pipeline. Multiple jobs in the same
stage can be executed in parallel, provided we have concurrent runners.

In URBANITE, a runner has been defined by now. It runs in one of the machines of the integration
environment, URBANITE.esilab.org, and runs the GitLab CI/CD jobs defined.

2.3 Docker

Infrastructure as Code (laC) is a form of configuration management that codifies an
organization's infrastructure resources into text files. These infrastructure files are then
committed to a version control system like GitLab.

In URBANITE, Docker is the IaC technology chosen. Docker allows provisioning to be more
consistent and reproducible. Containers allow, using the code, the explicit provision of the
configuration of the containers, that can be applied and reapplied many times, to put a server
into a known baseline: operating system, packages to include, content, configuration, etc.
Docker allows containers creation, instantiation, stopping and deletion, logs communication and
persistency definition.

Using Docker technology implies that each “dockerizable” component in URBANITE must have
an associated Dockerfile in its repository. A Dockerfile is a text document that contains all the
commands to assemble an image automatically. A very simple Dockerfile looks like this:

FROM httpd:2.4
RUN mkdir /usr/local/apache2/htdocs/ui
COPY ./public-html/ /usr/local/apache2/htdocs/ui

2.3.1 Portainer

Portainer is an open source tool for managing container-based software applications. It can be
used to set up and manage environments, deploy applications, monitor app performance and
triage problems.

In URBANITE, a Portainer instance has been deployed to make simpler for developers and
integrators deploying apps and troubleshooting problems.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 14 of 46

D5.6 — URBANITE DevOps infrastructure

Version 1.0 — Final. Date: 31.03.2021

Stack details &

¥ stack

ack details

urbanite-develop

Containers

Q fearch
State |3 ick
O Neme i = Stack mage
g) B o= > usanteceveiop opt
mR 1) s 0= > ubanitedevelop optima-urbanits-ch
O w P y EIZT) B 0w > ubanite-develop optims-urbanite-d
O we e 5o urbanite-develop urbanite-d
O we EO urbanite-develop dazefé153a9a
O ur EO urbanite-develop 566c
O wre o urbanite-develop 0636a09efddt

i Portainer suppert @ admin
ol A,

M Columns @ Settings

P

Createa Acdress Pulished Ports ownership
1develop 2021-02-0814.0915 1722703 (10080 ® aaministrate
202001341851 1722702 (F8080-6080 [54438441 4@ administrate

;elop 2020113133253 1722704 (& 9000:30 ® administrate
2021-02-0814.09.24 & administratc
2020113155500 - - ® aaministrate

2020015 49601 - - ® administrate
2020-1-1313:33.04 - - & administrate

Figure 7. Portainer: view of the URBANITE-develop stack of containers

2.3.2 Artifactory

Some container technologies support the container’s registry usage, where the developed
containers can be uploaded so that other team members can download, use, and test them with

a small set of instructions.

A binary repository manager is a dedicated server application designed to manage binary
components needed for the applications that we build. Using a repository manager is one of the

best practices for using any build tools.

In URBANITE, we are using Artifactory as a repository manager. We offer a registry at the level
of the project, where all binary artefacts (docker images) can be stored and downloaded. This
provides efficiency, reliability, consistency and facilitates automation using its REST API.

Project Title: URBANITE

Page 15 of 46

Contract No. GA 870338
www.urbanite-project.eu

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

. Welcome,
tecnalia H Artifacts Bl urbanite x Q = inaki.etxaniz@tecnalia.com
-
us

Happily serving 57,667 artifacts & SetMe Up T Deploy

ee Simple % * T i@ optima-urbanite-docker-dev ¥ Actions
& optima-afarcloud-docker

& optima-medina-docker-dev

B optima-medina-dock
= optima-urbanite-docker-dev

H optima-urbanite-docker-dev-local

docker
artifactory/optima-u

e-default

Registry docker del proyecto Urbanite

Included Repositories

H optima-urb... @ dockerhub-..

Figure 8. Artifactory for the URBANITE project.

3 DevOps procedures

In this section, we describe the different procedures that are associated with the DevOps
infrastructure established in URBANITE. These procedures aim to support the integration of the
components coming from the different development teams that contribute to the URBANITE
platform and serve to several roles in the project:

e Development teams: that implement components and want to test them within the
URBANITE platform.

e Integrators: in charge of putting all the pieces together

e DevOps infrastructure maintainer: in charge of monitoring the health and perform
maintenance activities.

e Release responsible: in charge of delivering and updating the platform for the project.

e Pilot Responsible: in charge of managing, planning, scheduling, and controlling software
delivery towards the project pilots.

One person can, and probably will perform more than one of these generic roles in the project.
Nevertheless, we have preferred to separate them for the sake of clarity.
3.1 Operation procedures

This section describes the procedures for the development teams, the release responsible and
the pilot responsible. A separate section will be provided for each of the roles.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 16 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

3.1.1 Development team

The development team oversees coding the different parts of the application and configuring
their surrounding components and services (such as databases, big data infrastructures,
message queues, etc.) when necessary.

In this section, we include procedures related with the testing of changes in already integrated
components that do not require to change the integration setup. Changes in the integration
setup -such as adding components or modifying the way in which they are integrated- require
the supervision and support from the Integrator and are described latter on.

3.1.1.1 Upgrading a component in integration environment

The objective of this procedure is to allow the development teams to upgrade their assets
autonomously in the integration environment. Using this procedure, they create a new branch in
the deployment repository with the last changes. That branch is tested against the automated
tests, and if it succeeds, they will be allowed to merge them into the “develop” branch. As soon
as the code is merged, the development environment will be updated with the last changes, and
everyone in the project will have access to them for evaluation and interactive testing purposes.

REQUIRED:

Internet connection, Git client.

PROCEDURE:

[NOTE1: The name of the component is indicated through the text as [component_name].]

[NOTE2: in case that the component or any of its associated files requires changes in their start-
up configuration, communicate with the Integrator to execute the Maintenance procedure
“Component integration/update”.]

Make sure that the desired changes to the component are committed and pushed into the
component repository. Also, be sure that the development tests have been performed, if any.

Take note of the commit id to be integrated with the rest of the parts of the URBANITE platform,
for example, 3a661d46.

Clone locally the URBANITE-deploy repo
https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy. In case it has been cloned
before, just pull the latest changes from the remote repo. Be sure to be in the “develop” branch

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-
deploy

cd URBANITE-deploy

git checkout develop

git pull --recurse-submodules

git submodule update --init --recursive

Check that we are in the latest version, issuing a git status with a result showing no changes. In
case we see any undesired change, we need to reset it or take it into account for the upcoming
commit.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 17 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

git status

Create a new branch for the changes we are going to introduce. The recommended branch name
is “update” plus an identifier (e.g., update/ui_001). This will group all the updates in the GitLab
user interface. Then go to the folder in which the component is linked (e.g. /[component_name])
and checkout the desired commit.

git checkout -b update/[component name] 001
cd git/[component name]

git pull

git checkout 3a661d46

Come back to the URBANITE-deploy repo root folder and add and commit the component (it is
always recommended to verify the changes before the commit). If everything is ok, push the
changes to the remote repo.

eel oo

eel oo

git add git/[component name]

git status

git commit -m "updates ui"

git push —-set-upstream origin update/ui 001

As soon as you push the new branch, a pipeline will be fired in the integration environment. This
pipeline builds, runs, tests and destroys the entire URBANITE platform to make sure that the
components can be built and comply with the automated tests. You can check the progress and
the result of the pipeline at https://git.code.tecnalia.com/URBANITE/private/URBANITE-
deploy/-/pipelines.

Build Deploy Tests Stop

@ build_any_bran... @ deploy_any_bra... @ tests_any_branch @ stop_any_branch

Figure 9. Stages and jobs in the pipeline of any branch.

The push returns a message with a URL to create a request to merge the new branch in the
develop branch. For this, start a browser and paste that URL. Alternatively, in Windows
command line interface (cmd), you can issue the following command:

start chrome [URL]

You will be allowed to merge if the pipeline was correct. Check the messages and, if all is OK,
merge the new branch into develop. That will start a new pipeline in the integration
environment.

Build Deploy Tests Stop >

@ build_develop @ deploy_develop @ tests_develop @ stop_develop

Figure 10. Stages in the pipeline in the “develop” branch.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 18 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

This pipeline builds, runs and tests the entire URBANITE platform but, in contrast to the previous
pipeline, it leaves the platform alive, allowing you to perform additional manual tests. The
environment can be accessed through the GitLab GUI, in Operations > Environments.

L URBAMITE » Private * urbanite-deploy * Environments

Available 2 Stopped 0

New environment

Environment Deployment Job Commit Updated Upcoming Auto stop in

. V¥ develop -o- 328cfadd
develo #61 by deploy_develop #... 2 months a...
P ! ” pley " ﬂ Merge branch ‘fe...

&
v
<

ur B V master - 328cfadg
master #60 by @) deploy_master #1... 2 months a... 2 »~
@ Merge branch ‘fe...

Figure 11. The “develop” and “master” environments.

To finish, you should inform those affected by the change, either by sending an email or by other
means.

EXPECTED OUTCOME:

An updated integration environment (in the case of the example, accessible at the following
address: https://URBANITE.esilab.org:8443/ui/).

3.1.1.2 Debugging a component deployment

The objective of this procedure is to support the development team to debug and fix issues during
the release of their work into the integration environment (for example, if during the previous
procedure -“Upgrading a component in integration environment”- the pipeline fails at some
point) or even once the containers have been successfully deployed (for example, when some
issue is found during the interactive testing).

Build Deploy Tests Stop >

@ build_any_bran... @ deploy_any_bra... ® tests_any_branch stop_any_branch

Figure 12. Failure -in “Test” stage- in the pipeline.
REQUIRED:
Internet connection, Portainer.
PROCEDURE:

There are different mechanisms to support the development team in the debugging of issues in
the assets running in the integration environment: continuous integration logs, container logs,
container status, container command line.

Continuous integration logs are those gathered from the GitLab runners while executing the
continuous integration steps. They are accessible in URBANITE deploy project at GitLab, more
specifically in the pipelines section (Cl/CD > Pipelines). They are relevant when the pipeline fails.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 19 of 46

https://urbanite.esilab.org:8443/ui/

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

When this occurs, we usually receive an email from the GitLab platform warning us about the
problem.

L URBANITE > Private » urbanite-deploy > Pipelines
Run Pipeline k‘ Clear Runner Caches Cl Lint
All 23 Finished Branches Tags
| Status = (%) Failed X [x] ‘ Q |
Status Pipeline Triggerer Commit Stages
.) V patch-1 o @b6bafe3 @ — @ 00:00:13
failed || #36880 ()
® faile n ‘ o e (;\‘] : 2/ B8 2 months ago Cc
develop -0 d589cdds ® 00:00:01
@ failed || #36776 g V' develop - ; (%) >~ C
i loherere] T L S 8 2 months ago
.) V develop o d58%cddé P @& 00:00:01
failed | #36774 (o »H») | S
“ & Merge branch updat...® 222 B 2 months ago C
- , V develop < d589cddé @ 00:00:01
failed #36770 (B ») | S
e “ Merge branch updat...® e B8 2 months ago c
- _ V master o 17d7ffad P & 00:00:02
failed | #36298 (») ») | S
“ “ Merge branch fix,’por..@ 22 8 3 months ago C

Figure 13. Pipeline page.

On the pipelines page we can see those that have failed. In failed ones, we can check the detail
or the pipeline by clicking at the pipeline id.

Status Pipeline Triggerer Commit Stages

N " V patch-1 -o- @bsbafe3 — @ 00:00:13
®fal|Ed %ﬁ%ﬂ e “ Update .gitlab-ci.yml @ @ ® 2/ & 2 months ago c

Figure 14. Pipeline ID to access the details.

That will bring us to the detail of the pipeline stages execution.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 20 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

L. URBANITE » Private * urbanite-deploy » Pipelines > #36880

(¥) failed | Pipeline #36880 triggered 2 months ago by “ Benguria Elguezabal, Gorka
Update .gitlab-ci.yml

@® 4jobs for patch-1 in 13 seconds

<]

o @ebebofes [

11 No related merge requests found.

Pipeline Meeds Jobs 4 FailedJobs 1 Tests 0

Build Deploy Tests Stop >

@ build_any_bran... @ deploy_any_bra... @ tests_any_branch stop_any_branch

Figure 15. Details page of a pipeline.

You can click on each of the stages to access its details. But beware that job logs are erased
periodically (every two months).

L URBANITE > Private > urbanite-deploy *> Jobs > #163780 tests any branch

Job #163780 triggered 2 months ago by “ Benguria Elguezabal, Gorka
Mew issue

Job has been erased by 1 week ago
Duration: 9 seconds

Ei d: 1 week
is job is archived. Only the complete pipeline can be retried. rasec: 1 week ago
This job hived. Only th I li b d 2
Timeout: 1h (from project) @

Runner: urbanite-runner (#276)

YA o anch | it compose

- Job artifacts
% - ol

Commit obsbafed [f

Update .gitlab-ci.ym!

Job has been erased (%) Pipeline #36880 for patch-1

tests v

=+ (¥)tests any branch

Figure 16. Details of a job that has been erased.

A stage with content would look like the following one.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 21 of 46

D5.6 — URBANITE DevOps infrastructure

Version 1.0 — Final. Date: 31.03.2021

L

Traefik dashboard

r

L

Traefik api
GET hittps://urbanite.esilab.org:8443/api/overview [200 0K, 552B, 4ms]
r

I *Traefik api only verified in Development”

L

O test.ee2.Frontend
. Frontend

iterations |

requests \

test-scripts |
prerequest-scripts ‘
assertions |

| total run duration: 226ms

| total data received: 27.85KB (approx)

GET https://urbanite.esilab.org:8443/dashboard

| average response time: 26ms [min: 4ms, max: 76m

[20@ 0K, 3.14KB, 16ms]

| *Traefik dashboard only verified in Development®

GET hit {furbanite.esilab.org:8443/ui/ [206 0K, 1.38KB, 3ms]

5,

tests_develop \ Retry |

Duration: 7 seconds
Timeout: 1h (from project) @

Runner: urbanite-runner (#276)

YO ereto Y docer-compose L ok

Job artifacts

These artifacts are the latest. They will
not be deleted {even if expired) until
newer artifacts are available.

Commit d1fac209 [
Merge branch 'gorka.benguria-develop-
patch-74419" into 'develop’

() Pipeline #41791 for develop

tests v

= (Y tests_develop

Figure 17. Details of a job.

Another mechanism is the container status checking. To check the status of each container in
the different container stacks in the integration environment, a Portainer server is provided. The
URL of URBANITE Portainer is: https://URBANITE.esilab.org:8443/Portainer/. It is also possible

to filter by stack if we are interested in doing so:

Stacks list &7

n—p
T Stacks
a
i= Stacks
&
‘ =+ Add stack
i Q [earch.
= O Name 12

urbanite-develop

-
=

urbanite-gitlab-runner

urbanite-master

Type
Compose
Compose

Compose

Control

Limited

Limited

Limited

€ Portainer support @ admin

A my account @ logout

Ownership
® administrators
& administrators

& administrators

Items per page 10 w

Project Title: URBANITE

Page 22 of 46

Contract No. GA 870338

www.urbanite-project.eu

https://urbanite.esilab.org:8443/portainer/

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Figure 18. Portainer, stacks list.

The naming approach followed with containers indicates (i) the stack they belong to and (ii) the
name of the container. In this case, there are three stacks:

e URBANITE-develop: stack that runs the latest commit at the develop branch.
e URBANITE-master: stack that runs the latest commit at the master branch.
e URBANITE-any-branch: stack that runs the rest of branches as soon as they are pushed.

Container list & & portainer support @ admin
Contalners #my account @ log out

= Containers @ Columns £ Settings
s g0 ot a8 e |

Q Ssearch...
O Name ;T::f;,; z:t':iiil:'\s Stack Image
|:| urbanite-develop_frontend _1 m B O > urbanite-develop optima-urbanite-docker.artifact.t
|:| urbanite-develop_traefik_1 m B O > urbanite-develop optima-urbanite-docker.artifact.t
|:| urbanite-develop_portainer_1 m B O W > urbanite-develop optima-urbanite-docker.artifact.ti
[urbanite-gitlab-runner_gitlab... m B O I« > urbanite-gitlab-runner optima-urbanite-docker.artifact.ti
D urbanite-develop_newman.test__. E O urbanite-develop urbanite-develop_newman.test
D urbanite-develop_newman.test ... E O urbanite-develop dd2ef6153d98
D urbanite-master_frontend_1 B O urbanite-master optima-urbanite-docker.artifact.ti
D urbanite-master_traefik_1 B O urbanite-master optima-urbanite-docker. artifact ti
D urbanite-develop_newman test___ B O urbanite-develop 366C7C376a9C
D urbanite-develop_newman.test_... E O urbanite-develop 0636a0%efddb
4 »

Iltems per page 10 v

Figure 19. Portainer, container list.

We can then access the details of each container, clicking its name.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 23 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Container details & Portainer support @ admin
Contalners > urbanite-develop_frontend_1 Amy account & log out
QF Actions

BStop @Kl £ Restart Bl Pause | P> Resume [Remove | £ Recreate |l Duplicate/Edit

& Container status

1D 960accof37abfe5a320cf3f4693d38e871a21f9ddE6e59da38bfebb4002db3bf9
MName urbanite-develop_frontend_1[#

Status % Running for 20 hours

Created 2021-02-08 14:09:15

Start time 2021-02-08 14:09:15

O Inspec & Stats ¥ Attach

Figure 20. Portainer, container details.

In the container details, we can see information about the variables, the labels, the networks or
the volumes. Besides, we have access to the container logs and console, which is useful in the
odd case that a deployment error takes place during the testing phase of the deployment
(container logs show the same output as issuing the “docker 1logs -f” command at the
command line).

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 24 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

B Log viewer settings

Auto-refresh logs (2] (
Wrap lines (

Display timestamps)

Fetch Alllogs v
Search Filter...
Lines 100

oo

AHBEB558: httpd: Could not reliably determine the server's fully qualified domain name, using 172.27.8.3. Set the 'Serveri
ame' directive globally to suppress this message
AHPB558: httpd: Could not reliably determine the server's fully qualified domain name, using 172.27.8.3. Set the 'ServerN
ams' dire e globally to suppress this message

[Mon Feb @8 13:@9:15.928313 2021] [mpm_event:notice] [pid 1:tid 149163967480960] AHE@489: Apache/2.4.46 (Unix) configured
-- resuming normal operations

[Mon Feb @8 13:@9:15.928459 2021] [core:notice] [pid 1:tid 14@163967450958] AH208%4: Commend line: 'hitpd -D FOREGROUND'

172.27.6.2 - - [08/Feb/2821:13:85:24 +B860] "GET /ul/index.html HTTP/1.1" 266 1183
172.27.8.2 - - [B8/Feb/2821:13:89:26 +08909] "GET /uis HTTP/1.1" 288 1133
162.142.125.128 - - [@9/Feb/20821:06:33:12 +2@2@] "GET / HTTP/1.1" 28@ 45

Figure 21. Portainer, container logs.

Container console gives us access to the terminal at the container. As in the command line, you
must specify how to access the shell (as it varies depending on the container base: sh, bash,
ash...) and you can also specify the user (usually root).

Container console & Portainer support € admin
Contalners > urbanite-develop_frontend_1 > Console A my account % log out

>_ Execute

Command a ‘ /bin/bash N
[/binfash

Use custom command
-1 /bin/sh

user @ root

Figure 22. Portainer, accessing container console.

Once we choose the right command, we get access to the container console:

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 25 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

?— Execute

Exec into container as default user using command bash

root@960acc9f37ab: /usr/local/apache2§

Figure 23. Portainer, container console.

Within the console, we can issue most of the command that we can use in a regular shell. We
can install tools, create, edit, read and delete files, etc. It is useful for several purposes like
checking connectivity, checking stored data, checking those logs that are not thrown to console
but stored in files, or checking configuration files.

Take into account that there are some commands, such as reboot or device related commands,
that are limited by the nature of the docker container technology. For example, in order to
reboot a container, the alternative will be to “Restart” the container from the Portainer console.

Container details @ Portainer support @ admin
Contalners > urban -.—:--::E"\'"TK'C_:l ontel 1:'_1)"ﬂ_‘(account :“E‘: out
8¢ Actions

WStop FKNII 2 Resﬁrt Il Pause £ Recreate N Duplicate/Edit

Figure 24. Portainer, actions on containers.

3.1.1.3 Creating an issue

The objective of this procedure is to provide feedback to other development team about some
issue at development or integration.

REQUIRED:
Internet connection.
PROCEDURE:

Go to the URBANITE GitLab group https://git.code.tecnalia.com/groups/URBANITE/-/issues, and
open an issue. We create an issue associated with the project (repository) associated. The
assignment can be adjusted afterwards; therefore, in case it is not clear, you can assign the issue
to URBANITE-deploy.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 26 of 46

https://git.code.tecnalia.com/groups/urbanite/-/issues

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

[C & gitcodetecnalia.com/groups/urbanite/-/issues Co 3 'EB O 0 » ﬂ H
2 Aplicaciones @ Sistemas Tecnalia & Resultado deimage.. @ Microsoft Forefront.. W Bookmarks () » Ctros marcadores
Projects ¥ Groups ¥ More v v
L L URBANITE * Issues
o B (=] Select project to create issue ~
Open 1 Closed 0 Al 1 N Q |
1 RBANITE / Private / WP4
R - - Cear CElor raculte
Recent searches Search or filter results, gorithms and simulation /
o BkeAnalysis
Created date 1=
URBANITE / Public
a
implement test over integration URBANITE / Private / temporal
o] urbanite/private/urbanite-deploy#1 . opened 3 months ago by Benguria Elguezabal, Gorka (®) M1

URBANITE / Private / WP2

URBANITE / Private / urbanite-
deploy jj

URBANITE / Private / urbanite-
gitlab-runner-deploy

LIRRANITE / Private / urhanite- e

Figure 25. Portainer, selecting project to create an issue.

When we choose the target project the creation button changes to reflect that selection.

&« c 8 git.code.tecnalia.com/groups/urbanite/-/issues Lo 38 eﬂ 0O Q0 N w

i Aplicaciones @ Sistemas Tecnalis G Resultado de image.. @ Microsoft Forefront.. ¢ Bookmarks @ » Otros marcador

u Projects ¥ Groups ¥ More v Q e My e @~

I ' L URBANITE > lIssues

@« Bl (] New issue in urbanite-deploy v

Open 1 Closed 0 All 1

I
Recent searches Search or filter results
@
* Created date 1=
iy
implement test over integration =
3 urbanite/private/urbanite-deploy#1 - opened 3 months ago by Benguria Elguezabal, Gorka (® M1 updated 3 months ago

Figure 26. Portainer, creating an issue.

Once created, the issue submit dialog will open. We can fill the relevant fields and label it as
“new” so that we can identify it during the planning meetings to discuss, complete, prioritize
and schedule appropriately.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 27 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

New Issue
Title Problem with button in the ui
Add description templates to help your contributors communicate effectively!
Type Issue
Description Write Preview B I 9 < & = i = H ."
khen the button is clicked nothing happens
Markdown and quick actions are supported B Attach a file
[This issue is confidential and should only be visible to team members with at least Reporter access.
Assignee Benguria Elguezabal, Gorka Due date Select due date
Milestone M1
Labels new

Figure 27. Portainer, new issue details.

EXPECTED OUTCOME:

A new issue in the GitLab URBANITE group to be discussed during the planification meetings.

3.1.2 Release responsible

The release responsible oversees managing, planning, scheduling, and controlling software
delivery. The releases will be focused mainly on the project pilots, but there can be other
releases related with project milestones, meetings, reviews, etc.

[NOTE: Some procedures performed by the Release responsible in the master environment -

e.g., debugging a component, creating an issue- are so equivalent to those followed by

developers in the development environment that we decided not to repeat them here.]
3.1.2.1 Promoting a component to Master

The objective of this procedure is to promote the “develop” environment to “master”. The master
branch holds snapshots of the develop branch. These snapshots can be created in response to
different needs: an internal review, a meeting, a milestone, a release, a fix, etc.

REQUIRED:

Internet connection, Git client.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 28 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

PROCEDURE:

It is assumed that the quality of the component to be promoted has been validated with the
required tests that can involve using additional endpoints like REST APIs, message queues,
databases, etc.

First of all, communicate to the project team that a component release is going to be fixed. This
implies that, during the process, merge requests to the develop branch may be constrained. For
this, a repo maintainer should temporarily restrict merging, modifying the branch configuration
(https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-/settings/repository).

Protected Branches Collapse
Keep stable branches secure, and force developers to use merge requests, What are protected branches?
By default, protected branches protect your code and:

* Allow only users with Maintainer permissions to create new protected branches.
* Allow only users with Maintainer permissions to push code.

* Prevent anyone from force-pushing to the branch.

* Prevent anyone from deleting the branch.

Protect a branch

Branch: Select branch or create wildcard

Wildcards such as *-stable or production/* are supported.

Allowed to Select
merge:
Allowed to Select
push:
Protect
Branch Allowed to merge Allowed to push
develop Developers + Mai... Mo one Unprotect
master Maintainers Maintainers Unprotect

Figure 28. GitLab, branch configuration.

A merge request has to be issued from the develop branch. The merge request will clone the
develop branch status in the master branch. To do so first, we update the develop branch and
all their submodules.

cd URBANITE-deploy
git checkout develop
git pull

git submodule update

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 29 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/repository

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Once updated the develop branch, we switch to the master branch and reset it to the status of
the develop branch.

git checkout master
git reset --hard develop

Make sure that master is equal to the current develop branch, using the command diff.

git diff develop

This should give no differences. Finally, upload the changes back to the remote repository.

git push

This will start the master pipeline in GitLab.

- #36874 A VF master o 328cfadg o & 00:00:04
= latest @ Merge branch ‘feature..~" & 2 months ago

Figure 29. GitLab, “master” pipeline.

This pipeline is in charge of updating the master environment that, once finished, will be
accessible in our example at https://URBANITE.esilab.org/ui/.

EXPECTED OUTCOME:

A new version of the master environment.

3.1.2.2 Release packaging for sharing

The objective of this procedure is to take a given master commit and generate a release for
sharing with other parties, mainly pilots.

[NOTE: this procedure is subject to be improved by extending the continuous integration in the
future.]

REQUIRED:
Internet connection, SSH access to the server.
PROCEDURE:

This procedure can be done from the server using SSH or using Portainer. We will describe first
the procedure with the SSH and later the same process using Portainer.

With SSH, access to the server. Once inside, log into the repository (in our case an Artifactory
repository).

docker login optima-URBANITE-docker-dev.artifact.tecnalia.com

The next step is to identify the images. To do so, we need to get the latest images

docker images | master

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 30 of 46

https://urbanite.esilab.org/ui/

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

We retag those images with a release version (e.g., v01)

docker tag optima-URBANITE-
docker.artifact.tecnalia.com/URBANITE/frontend:master optima-URBANITE-
docker.artifact.tecnalia.com/URBANITE/frontend:v01

and push them to the registry

docker push optima-URBANITE-
docker.artifact.tecnalia.com/URBANITE/frontend:v01l

With Portainer, we first need to make sure that we have registered the Artifactory registry in
Portainer (check at https://URBANITE.esilab.org:8443/Portainer/#/registries).

Registries & € Portainer support @ admin
Reglstry management A my account &+ log out

= DockerHub

The DockerHub registry can be used by any user. You can specify the credentials that will be used to push & pull Images here.

™

Authentication e)

£ Registries

| | + Addﬁglstry
Q, Search...
O Name l2 URL Actions

Mo registry available.
Iltems per page 10 v
Figure 30. Portainer, adding a register.
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 31 of 46

https://urbanite.esilab.org:8443/Portainer/#/registries

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Create registry & Portainer support @ admin
Reglstries > Add registry A my account & log out

Registry provider

£ Custom registry

£ Quay.io i Azure

Quay container registry Azure contalner registry

Define your own registry

Important notice

Docker requires you to connect to a secure registry. You can find more Information about how to connect to an Insecure registry In
the Docker documentation.

Custom registry details

Name optima-urbanite-docker

Registry URL @ optima-urbanite-docker.artifact.tecnalia.com

Authentication 9 (;Z

Username %

Password

Actions

Add registry

Figure 31. Portainer, registry details.

To publish an image, first, we find the image

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 32 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Image list & @ Portainer support @ admin
Images # my account & log out
& Pullimage
Image e.g. mylmage:myTag
Registry = DockerHub v

Note: If you don't specify the tag In the Image name, [[Z0g will be used.

I Images

Figure 32. Portainer, image list.

Once we are in the image details, we can tag the image

Image details & Portainer support @ admin
Images > sha256-60ec7c777578d505c9d0desd52d4f3d08e023233d26ffachbbec430973c 167 A my account @ log out

W Image tags

optima-urbanite-docker.artifact.tecnalia.com/urbanite/frontend.develop m
optima-urbanite-docker.artifact.tecnalia.com/urbanite/frontend:latest m
optima-urbanite-docker.artifact.tecnalia.com/urbanite/frontend:master m
optima-urbanite-docker.artifact.tecnalia.com/urbanite/frontend:test m

Note: you can click on the upload icon & to push an Image or on the download icon & topull an Image or on the trash icon @to
delete a tag.

@ Tag the image

Image frontend:vo1

Registry optima-urbanite-docker >
Note: If you don't specify the tag In the Image name, [[T2g will be used.

Tag

Figure 33. Portainer, creating an issue.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 33 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Once tagged, we can upload the image to the registry

Image details & Portainer support @ admin
Images > sha256:60ec7c777578d505c2d0desd52df3d08e023233d 26ffachbbocc430972C11667 A my account G+ log out

W Image tags

optima-urbanite-docker.artifact.tecnalia.com/frontend:v01 h

optima-urbanite-docker.artifact.tecnalia.com/urbanite/frontend:develop n
optima-urbanite- docker.artifact.tecnalia.com/urbanite/frontend:latest n

Figure 34. Portainer, image details.

To finish, independently of the procedure followed, we can find the image in the Artifactory (for
example, https://artifact.tecnalia.com/ui/repos/tree/General/optima-URBANITE-docker-
dev%2FURBANITE%2Ffrontend).

€ > ¢ (& bifsas RS ST -

Happlly serving 54,514 artifacts

e % T Im frontend

EEFERERNIS
&4,
=
P

Figure 35. Artifactory.

EXPECTED OUTCOME:

A set of docker images, with the version number, in the Artifactory.

3.1.3 Pilotresponsible

The Pilot Responsible is in charge of managing, planning, scheduling, and controlling software
delivery towards the project pilots.

[NOTE: Some procedures performed by the pilot responsible in the master environment -e.g.,
debugging a component, creating an issue- are so equivalent to those followed by developers in
the development environment that we consider not to repeat them here.]

3.1.3.1 Deploying/Updating a release to Pilots

The objective of this process is to instantiate the URBANITE platform/update the platform to new
versions in the pilots.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 34 of 46

https://artifact.tecnalia.com/ui/repos/tree/General/optima-urbanite-docker-dev%2Furbanite%2Ffrontend
https://artifact.tecnalia.com/ui/repos/tree/General/optima-urbanite-docker-dev%2Furbanite%2Ffrontend

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

[NOTE: This procedure covers the simplest scenario, where migrating the data structures to new
schemas is not required. In case a data transformation is needed, a more complex, ad-hoc
procedure with the close support of the integrator and the development team will be needed.]

REQUIRED:

Internet connection, a Linux server with a domain configured in a DNS, Git client, Docker server
and CLI, Docker compose CLI.

PROCEDURE:

Clone the URBANITE-deploy repository (for a deploy, only needed the first time), or simply pull
it (for an update, in case it has been already downloaded).

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-
deploy

cd URBANITE-deploy

git pull

Next, edit the environment file (.env, in the root folder) to configure the system according to the
specificities of the pilot. These can be details like:

e Version to deploy

e Details of external services to use, if any

e Credentials, if required

e The domain name

e Location of persistent storage in case it is configurable

vi .env

Once the repo has been downloaded and configured, we force the download of the images of
the docker compose:

export COMPOSE FILE=docker-compose.yaml:docker-compose-
expose.yaml :docker-compose-redirect-http.yaml
docker-compose pull

Once the images are downloaded, we run the docker compose:

export COMPOSE FILE=docker-compose.yaml:docker-compose-
expose.yaml:docker-compose-redirect-http.yaml
docker-compose up -d

This should produce a pilot platform instance up and running. You can check it accessing to the
corresponding URL.

EXPECTED OUTCOME:

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 35 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

An instance of the URBANITE platform running in the pilot.

3.2 Maintenance procedures

This section describes the procedures for the Integrator and the Maintenance responsible roles.
A separate section will be provided for each of these roles.

3.2.1 Integrator

3.2.1.1 Component integration/update

The objective of this activity is to add an additional component to the URBANITE platform or
update it afterwards.

[NOTE: The procedure for updating a component is very similar, only excepting the steps to
include additional submodules and dockerfile definition (because they should be included since
the first integration of the component).]

REQUIRED:
Internet connection, Git client software, Docker CLI, Docker compose.
PROCEDURE:

Download the URBANITE-deploy repo (with “clone”) or, in the case is already downloaded,
update it (with “pull”).

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-

deploy
cd URBANITE-deploy
git pull --recurse-submodules

(- - Only-first-integration - -)

Next step differs, depending on if the component to be added contains the docker container
definition or not:

a) Component with Dockerfile: Add it as a submodule under the git folder.

git checkout develop

git pull --recurse-submodules

git checkout -b feature/integrate [component name]

git submodule add [url of the repo] git/[componentiname]

b) Component without Dockerfile:
1. Create the subfolder for the component, and
2. Add the source under git/[component_name]/source

mkdir git/[component name]
explorer
(copy the source files)

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 36 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

3. Together with the developers of that component, design the dockerfile. This may
involve adding additional components.

vi git/[component name]/Dockerfile

Besides, we can edit the .gitmodules file of the URBANITE-deploy repository to make the repo
relative, if the domain of the repository is the same.

vi .gitmodules

For example, in the case a), the addition to the file should be:

[submodule "git/ [component name]"]
path = git/[component name]
url =../ [component name].git

(- - End-first-integration - -)

Together with the development team, we need to identify all the configuration parameters, the
endpoints and the persistence requirements. The configuration parameters include parameters
to be modified in each pilot or platform instance and parameters oriented to the integration
with other components. The first ones should be placed in the .env file, while the others can be

placed in the docker-compose file directly. We add the docker-compose configuration in the
main docker-compose file.

vi docker-compose.yml

3 frontend:
7 —] depends_on:

- - traefik@E@RiNg
image: 5{ DOCKER_REGISTRY PREFIX} urbanite/frontend: $ {URBANITE_VERSION:7err}

= build: @Ry

31 context: git/urkanite-uiERNAg

32 o dockerfile: Dockerfilc[Rilg

e = labels : RNy

- "traefik.enable=tru=" N3

35 - "traefik.http.routers.frontend.rule=Host ("${SERVER_HOST:?err}") && PathPrefix(/ui’)"EDH3
36 — "traefik.http.routers.frontend.entrypoints=websecurs" [EANg

And we include the default values for the environment parameters at .env file

vi .env

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 37 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

1 I# Reference documentation@ERilg
Z # hrtps://docs.docker.com/compose/environment-variables

3
4 DOCKER REGISTRY PREFIX=optima-urbanite-docker.artifact.tecnalia.com/@E3i#3
5

] # https://docs.docker.com/compose/reference/envvars/fcompose filefcompose project name @R
7 COMPOSE PROJECT NAME=urbanite-developERilg
8

9 # variakles for urbanite.dcERNg

10

11 URBANITE VERSICH=latest[33

12

13 SERVER_HOST=urbanite.tri.devERmg

14 CERTIFICATE SIGNING KEY PASSPHRASE=[RINg
15 LCME_CONFT e CR[LF]

16 ADD DEFRULT CR=true

17

15 HTTPS PORT=85443

We can also include a testing component to verify that the deployed component is working
properly. This component should be implemented together with the development team. This
component will be placed in a different file.

vi docker-compose-tests.yml

newman . test: ifg
depends_on:
- traefikifig
- frontendifig
build: testz/newmaniig
10 environment : g
11 — ENVIRCHNMENT=dockerifg
12 — SER'\’ER_HDST=S{SER'\"ER_HDST}
13 - ETTPS_P‘DRT=${HTTPS_E‘ORT:?EII}

o |

[TA =]

The resulting configuration can be tested locally.

NOTE: we can customize environment variables to test different configurations: master, develop
or any-branch. For example, for master:

export URBANITE VERSION=master

export SERVER HOST=URBANITE.localhost

export HTTPS PORT=443

export COMPOSE FILE=docker-compose.yaml:docker-compose-
expose.yaml :docker-compose-redirect-http.yaml
docker-compose build

docker-compose up -d

EXPECTED OUTCOME:

A new component/updated component in the URBANITE platform.

3.2.1.2 Component removal

The objective of this procedure is to remove a component from the URBANITE platform. This is
achieved by removing the submodule and updating the dockerfile to delete all its references. This
may also require modifying the tests.

REQUIRED:

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 38 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Internet connection, Git client, Docker CLI, Docker compose.

PROCEDURE:

Download the URBANITE deploy repo, or update in case it is already downloaded

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-
deploy

cd URBANITE-deploy

git pull

Delete the relevant section from the .gitmodules file.

vi .gitmodules

“submndule "git/urbanite-ui™] 3
path = git/urbanite-uiily
url = ../ urbanite-ui.gitilg

Stage the .gitmodules changes

git add .gitmodules

Delete the relevant section from .git/config.

vi .git/config

Run git rm --cached path_to_submodule (no trailing slash).

git rm -cached git/frontend

Run rm -rf .git/modules/path_to_submodule (no trailing slash). Commit the changes.

rm -rf .git/modules/ path to submodule
git commit -m "Removed submodule "

Delete the now untracked submodule files rm -rf path_to_submodule (in our example,
“frontend”)

rm -rf git/frontend

Remove the relevant sections from docker-compose and .env

vi docker-compose.yml

& E frontend:
7 —] depends _on
- - traefikENNY

image: ${DCCEER_REGISTRY PREFIX}urbanite/frontend:${URBANITE VERSION:?err)} I3
= build: @RS

context: git/urbanite—uiENMy

- dockerfile: Dockerfile(@Rila
= labels: @Rl
- "traefik.enable=tru=" N3
- "traefik.http.routers.frontend.rule=Host ("${SERVER_HOST:?7err}’) && PathPrefix(/ui’)"EDH3
- "traefik.http.routers.frontend.entrypoints=websecurs"[HANg

A b3 B BB

= @ e

[

AN b L

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 39 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

vi .env

1 [Reference documentationEREE
2 # https://docs.docker.com/compose/environment-variables

DOCKER_REGISTRY_ PREFIX=optima-urbanite-docker.artifact.tecnalia.com/ NS

COMFOSE_PROJECT_NAME=urbanite-developEilE
% variables for urbanite.dcERlE

1 URBANITE VERSICN=latest@ERilE

2

SERVER_HOST=urbanite.tri.devERig
CERTIF:[CATE_SIGNING_KEY_PRSSPHRASE=

5 ACME_CONFIG-[ER#I

16 ADD DEFAULT Ch=truc@REE

17

1 HITPS PORT=E8443

& % https://docs.docker.com/compose/reference/envvars/$compose filejcompose project name @RS

We can also be required to adjust tests.

vi docker-compose-tests.yml

newman.test: g
depends_on:
- traefikifia
- frontendila
bnild: tests/newmanifig
10 environment : Wy
11 - ENVIERCHNMENT=docker g

]

T Co

1z - SERVER_HOST=§{SERVER HOST}ilg
13 - HTTPS_PORT=5{HTTPS PORT:?crrlila

The resulting configuration can be tested locally.

NOTE: we can customize environment variables to test different configurations: master, develop
or any-branch. For example, for master:

export URBANITE VERSION=master

export SERVER HOST=URBANITE.localhost

export HTTPS PORT=443

export COMPOSE FILE=docker-compose.yaml:docker-compose-
expose.yaml:docker-compose-redirect-http.yaml
docker-compose build

docker-compose up -d

EXPECTED OUTCOME:

Running URBANITE platform without the deleted component.

3.2.1.3 Environment migration

The objective is to migrate the integration environment to a different server. This implies
installing the required Cl/CD tools in the new server and install and configure there a runner.

REQUIRED:

Internet connection, a new Linux server.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 40 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

PROCEDURE:

Login into the server and install Git, Docker and Docker-compose. Then, download a dockerized
runner configured for URBANITE by cloning the prepared repository in the URBANITE GitLab.

git clone https://git.code.tecnalia.com/URBANITE/private/URBANITE-
gitlab-runner-deploy.git
cd URBANITE-gitlab-runner-deploy

In GitLab, go to the URBANITE-deploy project and check the runner registration code (in Settings
> CI/CD > Runners, https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-
/settings/ci_cd).

&« c @ git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd o o3 0w %ﬂ s I e
225 Aplicaciones @ Sistemas Tecnalis & Resultado de image... @ Microsoft Farefront.. ¥ Bookmarks ¢f) % Google Scholar » Ctros marcadores
u Projects ¥ Groups ¥ More v hd Search or jump to... I~
y Specific runners Shared runners
a These runners are specific to this project. These runners are shared across this Gitlab instance,
The same shared runner executes code from multiple
Set up a specific runner automatically projects, lIH!ESSIY(})U conflgure autoscaling with MaxBuilds
sat to 1 (which it is on GitLab.com).
o Register a runner on a Kubernetes cluster. Learn more.
1. Click the button below. Disable shared runners | for this project
. Select an existing Kubernetes cluster or create a
3! 2. Sel isting Kub I
new one.)
&7 3. From the Kubernetes cluster details view, Avallable Shared runners: 5
applications list, install GitLab Runner.
@ : @® tlemMiri
Install GitLab Runner on Kubernetes
itlal ared Runner basado en Docker - BE
L Gitlab Shared R basad Docker - 1D 2
0O Set up a specific runner manually
1. Install GitLab Runner and ensure it's running.
% 2. Register the runner with this URL: [] yEJGWOHT
https://git.code.tecnalia.com/ ["'u
A Gitlab Shared Runner basado en Docker - 1D 3 =160
And this registration token:
rzGiy6ZAYCMKHPEAHRS: [
Reset registration token
® 6NyeG2Bz
tlols Clonead O R Pioel 1=

Figure 36. GitLab, runners.

On the server, configure the registration code and the registration tags in Linux environment
variables (REGISTRATION TOKEN and REGISTRATION TAGS respectively), and launch the
following docker-compose order to install and run the runner’s docker:

export REGISTRATION TOKEN=rzGjy62AYCmKHP8AHRS5a

export REGISTRATION TAGS= any-branch,develop,docker,docker-
compose, master, URBANITE, CHANGE THIS TO IDENTIFY THE SERVER
docker-compose up -d

After that, configure the domain to point to the new server. This can imply either:

a) the creation of a new domain and pointing it to the new server (This implies adjusting
the “SERVER_HOST” variable of the URBANITE-deploy project.)

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 41 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-gitlab-runner-deploy.git
https://git.code.tecnalia.com/urbanite/private/urbanite-gitlab-runner-deploy.git
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd
https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

b) changing the IP to which the old domain is pointing to the IP of the new server.

Cc B git.codetecnalia.com/urbanite/private/urbanite-deploy/-/settings/ci_cd [T H o (s BRI ﬂ

plicaciones @ Sistemas Tecnalia (& Resultado deimage.. @ Microsoft Forefront.. J Bookmarks Ef) 4 Google Scholar » Otros marcadory

Projects ¥ Groups ¥ More v] . 1M ~ ea

Variables @

Environment variables are applied to environments via the Runner. You can use environment variables for passwords, secret keys, etc.
Make variables available to the running application by prepending the variable key with K8S_SECRET_. You can set variables to be:

* Protected wvariables are only exposed to protected branches or tags.
* Masked variables are hidden in job logs (though they must match certain regexp requirements to do so).

Mare information %

Type T Key Value Protected Masked Environments
Variable CERTIFICATE_SIGNING_KEY_P.,, i X 4 All (default) Va
Variable ~ SERVER_HOST AR X X All (default) Va

Reveal values Add Variable

Figure 37. GitLab, variables.

If we want, we can force the pipeline to run, and build and deploy the system
(https://git.code.tecnalia.com/URBANITE/private/URBANITE-deploy/-/pipelines)

c IE git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines F a0 »

Aplicaciones @ Sistemas Tecnalia & Resultado de image.. @ Microsoft Forefront.. ¢ Bookmarks ¢f) # Google Scholar » Otros marcado|

Projects ¥ Groups ¥ More ¥ S Jun Q (12] M & @~

L URBANITE * Private » wrbanite-deploy > Pipelines

All 112 Finished Branches Tags Run Pipeline Clear Runner Caches Cl Lint

Filter pipelines | Q |

Status Pipeline Triggerer Commit Stages

Figure 38. GitLab, forcing a pipeline to run.

Once the new runner is active, we can remove the old one

ﬂ' Gitlab Shared Runner basado en Docker - 1D 1 #1538

Available specific runners g

@®BcbsSoRs... & »# Pause ® ct14n88X

urbanite-runner #2768 Gitlab Shared Runner basado en Docker - 1D 5 #162
oy ean | o] st ke <ompne | maser] e QR e
wsphere-ict
@ M8EQ7rrR
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 42 of 46

https://git.code.tecnalia.com/urbanite/private/urbanite-deploy/-/pipelines

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

Figure 39. Portainer, removing a runner.

EXPECTED OUTCOME:

A running runner and a new integration environment that will be waiting for the pipelines from
GitLab.

3.2.1.4 Version control system migration

The objective is to migrate the version control system from the Tecnalia GitLab to another one.
REQUIRED:

Internet connection, Git client.

PROCEDURE:

The procedure is not exhaustive, because it heavily depends on the new system. And if the new
system is GitLab based or not. If not, it implies changing the continuous integration procedure.

The first step is to decide the new system to be used. In case it is a service, formalize the contract;
In case it is software, install it on a server.

The next step is to migrate the repos to the new system.

Then we need to configure the continuous integration. If it is GitLab, we only have to configure
it as we have done previously the original system. If it is not GitLab, then we will have to identify
the new Cl system: Jenkins, circle-ci, etc. Some will imply to contract a service; others will imply
to install the selected software in new resources. Then, we will need to migrate the gitlab-ci.yml/
to the new system syntax and approach.

Finally, we need to communicate to the consortium the new repositories URL.

EXPECTED OUTCOME:

A new version control system running and setup along the project.
3.2.2 Maintenance responsible

3.2.2.1 Server monitoring

The objective is to verify that the server(s) supporting the integration environments is not running
out of computing resources.

REQUIRED:

Internet connection, SSH client.

PROCEDURE:

Login into the server, and once inside, check the storage, the memory and the processing.

EXPECTED OUTCOME:

Stable server.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 43 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

3.2.2.2 Endpoints checking

The objective of this procedure is to verify that the platform endpoints are responding.
REQUIRED:

Internet connection.

PROCEDURE:

Check the list of endpoints using the script that will be provided by the integrator.

EXPECTED OUTCOME:

Evidence that the services in the platform are running.

3.2.2.3 Containers monitoring

The objective of this procedure is to check that the containers of the platform are running.
REQUIRED:

Internet connection, SSH client.

PROCEDURE:

Login into the server, and once inside, check the storage.

docker ps

EXPECTED OUTCOME:

Evidence that the containers of the platform are running.

4 Conclusions

Tecnalia, who leads Task 5.3 - Continuous Integration and DevOps approach, provides the
DevOps infrastructure and is in charge of setting up the tools and managing the tasks during the
integration tasks in URBANITE.

The DevOps infrastructure has been established during the first year of the project. It is
described in the document, listing the different tools that compose it, how they are organized
and configured to manage the development, integration, and validation stages of the software
components to be implemented during the life cycle of the project.

The version control is based on the GitLab tool, with separate environments for development,
integration and pilots. Regarding integration and validation, GitLab CI/CD is the tool selected to
manage the deployment of the components, whereas Docker is the container technology used
to achieve hardware independence.

The provided infrastructure itself is necessary but not enough. Without the procedures and rules
that the user must perform to carry out the tasks, it would not be useful. So, the second part of
the document presents the most habitual procedures that allow the users of the infrastructure
—e.g. developer, integrator, infrastructure maintainer or pilot responsible- to manage the

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 44 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

DevOps tasks. These procedures have been explained, providing examples and code/command
snippets to clarify the details when needed. The procedures have been grouped by role. Five
roles have been defined, and more than twenty procedures are described to cover the full
software life cycle.

The infrastructure provided, here described, along with the associated documentation provided,
is expected to allow the adequate and fruitful delivery of the URBANITE software components
and help to its deployment in the pilot sites.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 45 of 46

D5.6 — URBANITE DevOps infrastructure Version 1.0 — Final. Date: 31.03.2021

5 References

(1]
(2]

(3]

(4]

(5]

(6]

URBANITE consortium, «D5.3 Integration strategy,» 2019.

GitLab, «GitLab,» [En linea]. Available: https://about.gitlab.com/. [Ultimo acceso: July
2020].

Git, "Git," [Online]. Available: https://git-scm.com/.

«GitLab issues,» [En linea]. Available:
https://docs.gitlab.com/13.0/ee/user/project/issues/. [Ultimo acceso: July 2020].

URBANITE Consortium, "URBANITE Annex 1 - Description of Action," 2019.

GitLab, «GitLab CI/CD,» [En linea]. Available: https://docs.gitlab.com/ee/ci/. [Ultimo
acceso: 09 03 2021].

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 46 of 46

