
D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 71

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D5.4

URBANITE Detailed architecture-v1

Editor(s): Juncal Alonso/Maria José López

Responsible Partner: Tecnalia

Status-Version: Final

Date: 31.03.2021

Distribution level (CO, PU): PU

Ref. Ares(2021)2241177 - 31/03/2021

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 71

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable: URBANITE Detailed architecture-v1

Due Date of Delivery to the EC: 31/03/2021

Workpackage responsible for the
Deliverable:

WP5 - URBANITE ecosystem integration and DevOps

Editor(s): Tecnalia

Contributor(s):
Juncal Alonso, Maria José López, Sonia Bilbao, Gonzalo
Lázaro, Iñaki Olabarrieta (Tecnalia), Fritz Meiners (FhG),
Maj Smerkol (JSI), Giuseppe Ciulla (ENG)

Reviewer(s): Denis Costa (WAAG)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP5, WP6

Abstract: This document contains the detailed design of

URBANITE: its components, modules, and interfaces.
Two releases of the document are planned. In the
second one the comments received from the user cases
implementation. This deliverable is the result of Task
5.2.

Keyword List: Architecture, Development environment,
integration, testing, requirements.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://creativecommons.org/licenses/by-sa/3.0/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 71

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

V1 14/01/2021 First draft version with TOC Tecnalia

V1.2 01/02/2021 Sections reorganized Tecnalia

V1.3 28/02/2021 Section 3.1.6 Tecnalia

V1.4 03/03/2021 Contribution to section 3.1 Fraunhofer

V1.5 04/03/2021 Contribution to section 3.1.5 Tecnalia

V1.6 04/03/2021 Transformation section Fraunhofer

V1.7 04/03/2021 Reorganization of the previous
versions

Tecnalia

V1.8 05/03/2021 Section 3.2.6 and 3.2.7 Tecnalia

V1.8_jsi 08/03/2021 Section 3.2.2 JSI

V1.5_ENG 08/03/2021 Data Catalogue; Controller; Virtual

SoPoLab; URBANITE UI;

Identity/Authorization Management

ENG

V1.9 8/03/2021 Document Reorganized Tecnalia

V1.9_jsi 12/03/2021 Contributions from JSI. JSI

V1.10 15/03/2021 Version ready for internal review Tecnalia

V1.11 26/03/2021 Internal review made WAAG

V1.12 26/03/2021 First version of the document Tecnalia

V2.0 29/03/2021 Final version Tecnalia

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 71

Table of Contents

Table of Contents .. 4

List of Figures .. 7

List of Tables .. 7

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

2 Overview of the URBANITE integrated conceptual architecture .. 12

2.1 URBANITE ecosystem generic architecture .. 12

2.2 Intended users and their roles .. 13

2.2.1 URBANITE actors ... 13

3 URBANITE ecosystem architecture detailed design .. 14

3.1 URBANITE components for data acquisition, aggregation and storage 14

3.1.1 Data Harvesting, Preparation and Transformation ... 14

3.1.1.1 Main Functionality... 14

3.1.1.2 Structural overview ... 15

3.1.1.3 Dynamic Overview (Scheduling) .. 16

3.1.1.4 Design implications based on the tool choice ... 18

3.1.2 Data Anonymization .. 18

3.1.2.1 Main functionality ... 18

3.1.2.2 Structural overview ... 18

3.1.2.3 Dynamic overview ... 19

3.1.2.4 Design implications based on the tool choice ... 19

3.1.3 Data Curation .. 20

3.1.3.1 Main functionality ... 20

3.1.3.2 Structural overview ... 20

3.1.3.3 Dynamic overview ... 20

3.1.3.4 Design implications based on the tool choice ... 20

3.1.4 Data Fusion/Aggregation .. 20

3.1.4.1 Main functionality ... 20

3.1.4.2 Structural overview ... 20

3.1.4.3 Dynamic overview ... 20

3.1.4.4 Design implications based on the tool choice ... 20

3.1.5 Data Storage & retrieval .. 20

3.1.5.1 Main functionality ... 20

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 71

3.1.5.2 Structural overview ... 21

3.1.5.3 Dynamic overview ... 24

3.1.5.4 Design implications based on the tool choice ... 25

3.1.6 Data Catalogue .. 25

3.1.6.1 Main functionality ... 25

3.1.6.2 Structural overview ... 26

3.1.6.3 Dynamic overview ... 30

3.1.6.4 Design implications based on the tool choice ... 31

3.2 URBANITE components for data analysis .. 32

3.2.1 Controller .. 32

3.2.1.1 Main functionality ... 32

3.2.1.2 Structural overview ... 32

3.2.1.3 Dynamic overview ... 33

3.2.1.4 Design implications based on the tool choice ... 34

3.2.2 Data Projection .. 37

3.2.2.1 Main functionality ... 37

3.2.2.2 Structural overview ... 37

3.2.3 Data Clustering .. 38

3.2.3.1 Main functionality ... 38

3.2.3.2 Structural overview ... 39

3.2.4 Self Organizing Map .. 40

3.2.4.1 Main functionality ... 40

3.2.4.2 Structural overview ... 40

3.2.4.3 Dynamic overview ... 41

3.2.4.4 Design implications based on the tool choice ... 41

3.2.5 Correlation discovery .. 41

3.2.5.1 Main functionality ... 41

3.2.5.2 Structural overview ... 41

3.2.5.3 Dynamic overview ... 43

3.2.5.4 Design implications based on the tool choice ... 43

3.2.6 Prediction .. 43

3.2.6.1 Main functionality ... 43

3.2.6.2 Structural overview ... 43

3.2.6.3 Dynamic overview ... 47

3.2.6.4 Design implications based on the tool choice ... 48

3.2.7 Analytical Framework .. 48

3.2.7.1 Bicycle Analysis .. 48

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 71

3.3 URBANITE components for decision support.. 53

3.3.1 Traffic simulation ... 53

3.3.1.1 Main functionality ... 53

3.3.1.2 Structural overview ... 53

3.3.1.3 Dynamic overview ... 57

3.3.1.4 Design implications based on the tool choice ... 57

3.3.2 Policy simulation and validation ... 58

3.3.2.1 Main functionality ... 58

3.3.2.2 Structural overview ... 58

3.3.2.3 Dynamic overview ... 58

3.3.2.4 Design implications based on the tool choice ... 58

3.3.3 Recommendation engine .. 58

3.3.3.1 Main functionality ... 58

3.3.3.2 Structural overview ... 59

3.3.3.3 Dynamic overview ... 61

3.3.3.4 Design implications based on the tool choice ... 62

3.3.4 Advanced visualization .. 62

3.3.4.1 Main functionality ... 62

3.3.4.2 Structural overview ... 62

3.3.4.3 Dynamic overview ... 62

3.3.4.4 Design implications based on the tool choice ... 62

3.4 URBANITE virtual SoPoLab .. 62

3.4.1 Main functionality ... 62

3.4.2 Structural overview ... 63

3.4.3 Dynamic overview ... 64

3.4.4 Design implications based on the tool choice ... 65

3.5 Integrated URBANITE UI .. 65

3.5.1 Main functionality ... 65

3.5.2 Structural overview ... 66

3.5.3 Dynamic overview ... 67

3.5.4 Design implications based on the tool choice ... 68

3.6 Identity/Authorization Management .. 68

3.6.1 Main functionality ... 68

3.6.2 Structural overview ... 68

3.6.3 Dynamic overview ... 69

3.6.4 Design implications based on the tool choice ... 69

4 Conclusions ... 70

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 71

5 References ... 71

List of Figures

FIGURE 1. FIRST VERSION OF URBANITE ARCHITECTURE ... 12
FIGURE 2: HARVESTING PROCESS .. 14
FIGURE 3: EXAMPLE OF A PIPE SPECIFICATION ... 15
FIGURE 4. DATA STORAGE & RETRIEVAL REPOSITORIES .. 21
FIGURE 5. MAIN CONCEPTS OF DCAT ... 21
FIGURE 6. SIMPLIFIED DCAT-AP MODEL .. 21
FIGURE 7. PROCESS OF STORAGE OF DATASETS METADATA AND RELATED DATA .. 25
FIGURE 8: DATA CATALOGUE – DATA CATALOGUE USE CASE DIAGRAM .. 26
FIGURE 9: DATA CATALOGUE - COMPONENT DIAGRAM .. 27
FIGURE 10: DATA CATALOGUE - ADMINISTRATOR SEQUENCE DIAGRAM ... 31
FIGURE 11: DATA CATALOGUE - USER SEQUENCE DIAGRAM ... 31
FIGURE 12: CONTROLLER - RELATIONS BETWEEN THE CONTROLLER AND THE OTHER COMPONENTS OF THE

URBANITE ECOSYSTEM ... 33
FIGURE 13: CONTROLLER - SEQUENCE DIAGRAM... 34
FIGURE 14: VIRTUAL SOPOLAB - USE CASES DIAGRAM .. 63
FIGURE 15: VIRTUAL SOPOLAB - COMPONENT DIAGRAM ... 64
FIGURE 16: VIRTUAL SOPOLAB - SEQUENCE DIAGRAM ... 65
FIGURE 17: URBANITE UI - USE CASE DIAGRAM ... 66
FIGURE 18: URBANITE UI - COMPONENT DIAGRAM .. 66
FIGURE 19: URBANITE UI - SEQUENCE DIAGRAM .. 67

List of Tables

TABLE 1: DATA CATALOGUE ADMINISTRATION - RETRIEVE FEDERATED CATALOGUES 27
TABLE 2: DATA CATALOGUE ADMINISTRATION - CREATE CATALOGUE .. 27
TABLE 3: DATA CATALOGUE ADMINISTRATION - UPDATE CATALOGUE .. 28
TABLE 4: DATA CATALOGUE ADMINISTRATION - RETRIEVE CATALOGUE .. 28
TABLE 5: DATA CATALOGUE ADMINISTRATION - DELETE CATALOGUE ... 29
TABLE 6: DATA CATALOGUE USER - FEDERATED SEARCH .. 29

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 71

Terms and abbreviations

API Application programming Interfaces

CKAN Comprehensive Knowledge Archive Network

DAG Direct Acyclic Graph

DCAT Data CATalogue

DCAT-AP DCAT Application Profile

EC European Commission

GPS Global Positioning System

JSON JavaScript Object Notation

NGSI Next Generation Service Interfaces

RDF Resource Description Framework

REST REpresentational State Transfer

SAML Security Assertion Markup Language

UI User Interface

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 71

Executive Summary

The present document contains the detailed description of the URBANITE integrated
architecture at month 12, starting with a theoretical vision of the URBANITE system that will
cover all the functional and non-functional initial requirements set by the technical work-
packages considering the social perspective and the input of the use cases detailed in deliverable
D5.1 [1]. The definition of the interactions among components is shown through the
specification of the interfaces, considering the dataflows envisioned for meeting the needs of
the different stakeholders.

The components that form the architecture are developed within the technical work packages
WP2, WP3, WP4 and WP5, supporting the functionalities provided by the Social Policy Lab, the
Data Management Platform and the Algorithms and simulation techniques, including the
URBANITE UI.

The sections of this document are organized to follow the outcomes of the different work
packages and present an overview of the URBANITE integrated conceptual architecture. Starting
with a general overview of the URBANITE architecture, covering the most important layers of
the ecosystem as the “Data acquisition, aggregation and storage” for the management of the
data within URBANITE, the “Data analysis” where the algorithms related to the analysis of the
big data will be performed and the“Decision support” including the mechanisms for taking
decisions based on the analysis made.

The general URBANITE UI involves all the layers mentioned above, allowing a fluid use of the
platform, and managing the identities and authorizations, making this ecosystem a safe and
secure context for the different stakeholders.

An important effort of integration will be required to ensure smooth interoperability of the
different components covering the entire data processing chain, implementing the
orchestration of all the components and services as an URBANITE controller module.

The architecture presented in this document is a lively design, subject to change following the
research activities of the project and the analysis of the use case evolution. Moreover, other
tools will be studied in case they fit into the architecture providing the functionality required
and making easier the development and integration of the URBANITE ecosystem.

There will be another version of this document in M24 reflecting the status of the URBANITE
Ecosystem at this point in the project.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 71

1 Introduction

1.1 About this deliverable

This deliverable is the first release of the detailed design of the URBANITE architecture, being
the second one the final schema of it. The description contains the components and interfaces
that are part of the URBANITE ecosystem.

The document reflects the work done in the T5.2 and T5.4 tasks jointly with WP2, WP3 and WP4,
and describes the main components of URBANITE architecture and the different Key Results,
including the interactions among them. The URBANITE User Interface is an important part of the
architecture since it is the contact point between the users and the ecosystem, as well as the
final visualization of all the analysis that the platform allows in order to support the decisions to
be made by those users. This UI will be developed using responsive web technologies that will
bring a good user experience.

1.2 Document structure

The structure of the document is organized to offer a coherent reading and a clear vision of all
the components that are part of the general architecture. There are some main sections
grouping the components following the type of functions they will provide. Inside these sections,
the individual components will be presented and described with a similar list of subsections
devoted to explaining the main functionality, a structural overview regarding the internal and
external interactions with other components or its own subcomponent, a dynamic overview of
the general process or workflow, and design implications based on the tool choice

The mentioned structure is as follow:

• Section 2: An overview of the general schema of the integrated architecture, as well as
the identification of the main actors and their roles.

• Section 3: The main section grouping the components following the type of functions
they will provide. Inside these sections, the individual components will be presented
and described with a similar list of subsections devoted to explaining the main
functionality, a structural overview regarding the internal and external interactions with
other components or its own subcomponent, a dynamic overview of the general process
or workflow, and design implications based on the tool choice.

o 3.1: A description of the components related to the acquisition, aggregation and
storage of the data, corresponding to the process in which the data are
harvested and finally stored in a formalized way. These components are Data
Harvesting, Preparation and Transformation, Data Anonymization, Data
Curation, Data Fusion/Aggregation, Data Storage & Retrieval and Data
Catalogue.

o 3.2: The Data analysis components regarding to the algorithms to perform the
analysis and processes that conform the “Engine” of the Ecosystem. The Data
projection, data clustering, self-organizing map, correlation discovery,
prediction, and the analytical framework are the components that provide the
intelligence of the platform in order to offer the analysis and processes needed
by the management of the data. The controller component is a utility for
orchestrating the components of the URBANITE Ecosystem.

o 3.3: About the components for decision support that present the analysis results
and guides the end-user towards the policy decisions. These components are
Traffic simulation, Policy Simulation and Validation, Recommendation Engine,
and Advanced visualization.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 71

o 3.4: SoPoLab. Description of this Digital virtual Space, for sharing experiences of
different policy domains.

o 3.5: The integrated URBANITE UI, for describing the component that provides
access to the URBANITE technical tools offered by the rest of the components.

• Section 4: Conclusions arose from this version of the architecture and future work.

• Section 5: References made in the content of the document.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 71

2 Overview of the URBANITE integrated conceptual architecture

2.1 URBANITE ecosystem generic architecture

The current vision of the URBANITE architecture is depicted in Figure 1.

Figure 1. First version of URBANITE architecture

This schema sketches the structural view of the URBANITE architecture in the present status.
More detailed views of the components that are part of it will be presented in the following
sections.

The structure presented is the result of the analysis made at this point from the technical work
packages, and it is liable to evolving regarding the outcomes of them, alongside the
requirements that the use cases establish.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 71

2.2 Intended users and their roles

2.2.1 URBANITE actors

The D2.2 deliverable [1] depicts the main actors of the new urban mobility scenario as the
citizens, service providers, public servants and policy makers.

The work made in order to define the main users of the URBANITE platform has been developed

with the participation of the pilot cities (Amsterdam, Bilbao, Helsinki and Messina), with the

objective of identifying the most relevant agents involved in the use cases of each city. The

common aspect of those actors has been the interest in the use of disruptive technologies in the

area of mobility and urban transformation.

The stakeholders there are classified into several groups as follow:

• Public servants: City’s administrators and local authorities

• Policy makers: Civil servants as municipalities.

• Service providers: Business companies, urban mobility platforms, Civil society/platform

and users/neighbour association

Regarding the use of the platform from the perspective of a group that can modify the

configurations and the flow of the different tasks to be performed with respects to the

management of the data, the role of Admin shall be assigned to the technical areas of the cities.

The Admin role will be able to modify the configurations and the flow of the different tasks to
be performed concerning data management and modify the configurations and the flow of the
different tasks to be performed. This role shall be assigned to the technical areas of the cities.

The municipalities, seen as the servants to offer the best services to the citizens, play the role of
administrators and those who harvest, curate and fuse data for visualizing and simulating
different behaviours, so they can use those outcomes as a support for making policies and
decisions in order to improve the citizens’ life.

The data providers are the companies managing the services in the areas related to urban

mobility, traffic analysis, health care, car and bike-sharing groups, etc.

More information about the social implication and participation as direct contributions of public

servants, citizens and other stakeholders in a co-creation process, can be found in that

document.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 71

3 URBANITE ecosystem architecture detailed design

3.1 URBANITE components for data acquisition, aggregation and
storage

3.1.1 Data Harvesting, Preparation and Transformation

3.1.1.1 Main Functionality

This section explains the concept of harvesting via a so-called pipe. In a broader sense, the entire
process of fetching, preparing, transforming, and exporting data may be referred to as
harvesting, i.e. providing a way to make heterogeneous data available in defined format and
means of access. This process is depicted in Figure 2. Data anonymization and curation are, as
shown in the architecture diagram, not part of this pipeline, but separate steps.

Figure 2: Harvesting process

As can be seen, the architecture follows the form of a pipeline. This means that data is passed
through the pipeline, and each component is agnostic of the other steps. This leads to loose
coupling and improves flexibility. For example, in a harvesting process for a data source that
already serves NGSI-LD (the common format for all data stored in URBANITE), the
transformation step could simply be omitted, with the preparation component writing directly
into the exporting component without having to rewrite APIs.

In detail, the harvesting process would typically consist of the following steps:

1. The scheduler triggers a pipeline

2. The harvester retrieves the data from the source’s API and forwards it into the

preparation component.

3. After cleaning and validating, the preparation component forwards the data to the

transformation component.

4. The data is transformed to the applicable NGSI data model and forwarded to the

exporter.

Schedule

Launch pipes
depending on

their set
schedule.

Fetch

Download raw
data from the
API of the data

source.

Prepare

Clean data and
perform

quality and/or
sanity checks.

Transform

Convert data
into the

corresponding
NGSI model.

Export

Write the
transformed

data into
storage.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 71

5. Finally, the exporter writes the harmonized data into the data storage component.

The data harvesting component is responsible for fetching data from a given API. It does not

alter the data. It can be considered the entry point of the data into the pipeline. As such, a

dedicated component is required for each type of data source. The harvesting component may

implement pagination mechanisms for handling data in chunks. However, this does not impact

the pipeline – each chunk is handled individually and does not depend on other chunks.

The data preparation component is responsible for performing initial cleaning and sanitation of
the data provided by the harvesting component. This ensures a fixed level of data quality and
integrity, which is required by the transformation component to operate flawlessly.

Data transformation is a key step in the harvesting pipeline. It cannot be expected that the
municipalities provide their data in one of the common data models developed by FIWARE used
in the URBANITE context. As such, the transformation of the heterogeneous data sources into
common models is vital for frictionless processing of the data henceforth. For a flexible
approach, the actual transformation instructions are loaded via scripts, either Javascript for
JSON based payloads or XSLT for XML based payloads. More engines can be added as pipeline
modules at a later point in time.

3.1.1.2 Structural overview

For a component to be compatible with the pipe concept they need to cohere to a certain
specification, which describes the orchestration of all components that make up a pipeline, as
well as storing their individual configuration. The specification is passed along the various
components in their declared order. Each component writes its output into the corresponding
section of the specification and forwards the data structure to the next service in line.

An example of such a pipe specification is shown in Figure 3.

Header:
 name: URBANITE harvester
 version: ‘2.0.0’
 transport: payload
body:
 segments:
 - header:
 name: fetch-data
 segmentNumber: 1
 body:
 config:
 address: https://dataProvider.eu/api
 inputFormat: application/rdf+xml
 - header:
 name: transform-data
 segmentNumber: 2
 body:
 config:
 scriptType: repository
 repository:
 uri: https://gitlab.com/pipes.git
 script: my-transformation-script.js
 username: sampleUser
 token: sampleToken
 - header:
 name: export-data
 segmentNumber: 3
 body: {}

Figure 3: Example of a pipe specification

https://dataprovider/
https://gitlab/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 71

For this to work, all components must implement a common endpoint, which is shown below.
Due to the limited scope of each component only one endpoint, aside from possible
metrics/monitoring endpoints, needs to be exposed:

/pipe

Accepts a pipe specification in JSON format.

Payload

JSON/YAML Object Pipe specification

Responses

202 Accepted

400 Bad request

3.1.1.3 Dynamic Overview (Scheduling)

The initial trigger for each harvesting run is issued by the scheduling component. It keeps track
of all pipeline specifications and their schedules. Whenever a timer triggers, the corresponding
pipe specification is sent to the first service specified.

The scheduling components, not part of the pipeline itself, feature different APIs than the pipe
modules.

/triggers

Get a list of pipe ids and scheduled triggers.

Payload

JSON Object Map of pipe IDs and triggers

Responses

200 Ok

/triggers

Bulk update of all triggers.

Payload

JSON Object • IntervalTrigger

• CronTrigger

• SpecificTrigger

Responses

200 Ok

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 71

/triggers/{pipeId}

Returns all triggers for a pipe with pipeId.

Payload

JSON Object • IntervalTrigger

• CronTrigger

• SpecificTrigger

Responses

200 Ok

404 Pipe not found.

/triggers/{pipeId}

Create or update triggers for pipe with pipeId.

Payload

JSON Object • ImmediateTrigger

• IntervalTrigger

• CronTrigger

• SpecificTrigger

Responses

200 Triggers created successfully.

201 Triggers updated successfully.

404 Pipe not found.

/triggers/{pipeId}

Delete previously created triggers.

Responses

200 Triggers deleted successfully.

404 Pipe not found.

/triggers/{pipeId}/{triggerId}/{status}

Set status of a trigger. To be changed to POST in future versions.

Responses

200 Trigger status successfully set.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 71

404 Pipe or trigger not found.

409 Status already set or unknown.

3.1.1.4 Design implications based on the tool choice

None

3.1.2 Data Anonymization

3.1.2.1 Main functionality

The anonymization component is a restful microservice capable of transforming large datasets
in conformity with data protection requirements for further data analysis. In order to achieve a
certain degree of anonymization the user can mark specific attributes that are likely to reveal
information about a person or a smaller group. Those identifiers are then transformed in a way
that ensures a sufficient level of anonymization. Currently supported anonymization methods
are suppression and generalization, which either delete attribute entries in a row or generalise
them according to a fixed hierarchy, such as street -> zip code -> city.

3.1.2.2 Structural overview

All endpoints exposed by the provided APIs serve the configuration management. Since this
component is a work in progress, the APIs are subject to change.

/

Generate JSON Configuration to anonymize personal data.

Payload

JSON Object Anonymization configuration.

Responses

200 Ok

400 Bad request

/configuration

Get configuration as JSON from a database.

Payload

JSON Object Anonymization configuration.

Responses

200 Ok

400 Bad request

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 71

/configuration

Store configuration as JSON in Database.

Payload

JSON Object Anonymization configuration.

Responses

200 Ok

400 Bad request

/configuration

Update configuration as JSON in Database.

Payload

JSON Object Anonymization configuration.

Responses

200 Ok

400 Bad request

/configuration

Delete configuration.

Responses

200 Configuration deleted successfully.

3.1.2.3 Dynamic overview

In accordance with the architectural diagram, the anonymization is not part of the harvesting
pipeline. Instead, it will run as a separate service, if possible, on the client side. This means that
the anonymization ideally takes place before any data is exposed via API and subsequently
harvested.

3.1.2.4 Design implications based on the tool choice

None

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 71

3.1.3 Data Curation

3.1.3.1 Main functionality

Often the value of data can be raised by curation, i.e. enrichment and annotation. As such, the
curation component plays a vital role in getting the most out of the data provided by the
municipalities and deriving the most precise recommendations.

3.1.3.2 Structural overview

Since this component is still in development, the APIs are not final yet. The granularity with
which the curation can be fine-tuned is to be determined.

3.1.3.3 Dynamic overview

Like anonymization, data curation is also not part of the harvesting pipeline. Instead, the
curation process will be triggered by the user.

3.1.3.4 Design implications based on the tool choice

None

3.1.4 Data Fusion/Aggregation

3.1.4.1 Main functionality

Data aggregation is the process of gathering data and presenting it in a summarized format. It
can be used to hide personal information, or to provide information in a synthetic form.

Data fusion is the process of integrating multiple data sources to produce more consistent,
accurate, helpful information and sophisticated models than that provided by any individual
data source. This means that the result of the data fusion process, once the N different datasets
are integrated should be worth more than the sum of each single dataset's result.

3.1.4.2 Structural overview

Since this component is still in development, the APIs are not final yet.

3.1.4.3 Dynamic overview

The processes of data fusion and data aggregation will use the data that is already stored in the
data storage & retrieval repositories. In the case of aggregation, they will be probably batch
processes that are executed via a scheduler.

3.1.4.4 Design implications based on the tool choice

None

3.1.5 Data Storage & retrieval

3.1.5.1 Main functionality

The Data Storage & Retrieval component provides the means to store and retrieve datasets
metadata and related data. Hence, this component will have repositories to store both DCAT-
AP compliant metadata and transformed data, as depicted in Figure 4.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 71

Figure 4. Data Storage & Retrieval repositories

Figure 5 represents the main concepts of DCAT which are catalogue, dataset and distribution. A
catalogue represents a datasets collection. A dataset represents a data collection published as
part of a catalogue. A distribution represents a specific way to access a specific dataset (such as
a file to download or an API). Figure 6 provides a simplified representation of the DCAT-AP
Model. For example, the following dataset taken from Euskadi Open Data Portal,
https://opendata.euskadi.eus/catalogo/-/estadistica/ofertas-de-empleo-registradas-en-
lanbide-durante-el-2021/ is represented following DCAT-AP metadata model in RDF format at
this link:

https://opendata.euskadi.eus/contenidos/estadistica/ofertas_empleo_2021/es_def/r01DCAT
Dataset.rdf

Dataset metadata include, for example, the title, description, publisher, a temporal period, etc.

The concept dcat:Distribution provides metadata about the distribution, e.g. the property
dcat:accessURL provides the information about how to access a specific dataset. Other
important metadata related to the distribution is, for instance, the license, a description, the
format of the data (e.g. CSV, JSON), etc.

Figure 5. Main concepts of DCAT

Figure 6. Simplified DCAT-AP Model

3.1.5.2 Structural overview

As mentioned before, this component provides APIs for the storage and retrieval of transformed
data and datasets metadata.

https://opendata.euskadi.eus/catalogo/-/estadistica/ofertas-de-empleo-registradas-en-lanbide-durante-el-2021/
https://opendata.euskadi.eus/catalogo/-/estadistica/ofertas-de-empleo-registradas-en-lanbide-durante-el-2021/
https://opendata.euskadi.eus/contenidos/estadistica/ofertas_empleo_2021/es_def/r01DCATDataset.rdf
https://opendata.euskadi.eus/contenidos/estadistica/ofertas_empleo_2021/es_def/r01DCATDataset.rdf

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 22 of 71

In the case of the storage of transformed data, the API will offer one method for all data models.
The data model will be specified as a parameter. Before storing the data, this component
validates the fields according to the NGSI related data model and, if valid, then inserts the data
into a dedicated MongoDB collection <DataModelName>_GeographicZone, e.g.
TrafficFlowObserved_Helsinki.

insertTData

Inserts the transformed data into the database, in the collection of the model <Model> and the zone
specified by the “zone” parameter

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

200 Ok

400 Bad request

* mandatory

getTData

Retrieves transformed data from the repository according to the given data model

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

filters (JSON) Different filters (NGSI data model fields) to apply.

count (positive integer) Number of documents to retrieve

Responses (JSON with the following fields)

model (String) Name of the Data Model (i.e.: “TrafficFlowObserved”). The same as
input.

Data (JSON Array) Requested data, in NGSI Data Model

getTDataRange

Retrieves transformed data from the repository according to the given data model and for a given
period in time.

Parameters

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 23 of 71

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

start* (DateTime in
ISO8601 UTC format)

Date and time from which records are obtained. Mandatory if “end” is
not present.

end* (DateTime in
ISO8601 UTC format)

Date and time until which records are obtained. Mandatory if “start” is
not present.

Responses (JSON with the following fields)

model (String) Name of the Data Model (i.e: “TrafficFlowObserved”). The same as input.

Data (JSON Array) Requested data, in NGSI Data Model

getSupportedDataModels

Retrieves the supported data models for transformed data

Parameters

None

Responses

Data (JSON Array) List of data models

In the case of storage and retrieval of datasets metadata, the API offers the following methods.

dataset

Inserts new dataset metadata or updates it if it already exists for that dct:identifier.

Parameters

id* (String) Dataset identifier (dct:identifier)

metadata* (JSON-LD) Updated metadata in JSON-LD format

Responses

200 Ok

400 Bad request

dataset

Deletes a data set metadata

Parameters

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 24 of 71

id* (String) Dataset identifier (dct:identifier)

Responses

200 Ok

400 Bad request

getDataset

Retrieves DCAT-AP dataset metadata.

Parameters

id* (String) Dataset identifier (dct:identifier)

Responses

dataset metadata in JSON-LD format

getCatalogueDatasets

Retrieves all DCAT-AP datasets in the catalogue.

Parameters

None

Responses

dataset metadata in JSON-LD format

searchDatasets

Searches among the metadata of the existing dataset

Parameters

search params* Search parameters

Responses

Dataset list List of datasets whose metadata fulfils the search parameters criteria

3.1.5.3 Dynamic overview

The main components involved in the process of storage of datasets metadata and related data
are the Data Harvester, the Data Transformation, the Data Catalogue and the Data Storage &
Retrieval components, as shown in Figure 7.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 25 of 71

Figure 7. Process of storage of datasets metadata and related data

3.1.5.4 Design implications based on the tool choice

None.

3.1.6 Data Catalogue

3.1.6.1 Main functionality

The Data Catalogue will offer the functionalities to discover and access the datasets collected
and managed by the components of URBANITE Ecosystem for data acquisition, aggregation and
storage, such as the Data Harvesting and Data Storage & Retrieval components.

Figure 8 depicts the main actors of the Data Catalogue and the main functionalities it provides.

Apart from the possibility to search over the datasets directly collected by the URBANITE
Ecosystem, the Data Catalogue will offer the possibility to search useful data across external
“federated catalogues” (such as Open Data Portal) to increase the chance to find useful data.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 26 of 71

Figure 8: Data Catalogue – Data Catalogue Use Case diagram

The Administrator is in charge of managing the federation of the catalogues, where a catalogue
represents a data source, for instance, the Data Storage & Retrieval component. He/she can add
new catalogues, delete or edit the existing ones. Moreover, the administrator can manage the
platform configurations.

The End user is then able to perform a federated metadata search among the harmonized DCAT-
AP datasets provided by the federated catalogues. Moreover, the end user can perform SPARQL
queries over the federated RDFs provided by the federated catalogues, or he/she can access to
statistics about the federated catalogues.

The Data Catalogue will expose APIs to access its functionalities; thus an external system will be
able to interact with the platform using such APIs.

The candidate tool to realize the Data Catalogue is Idra1. Idra is a web application able to
federate existing Open Data Management Systems (ODMS) based on different technologies
providing a unique access point to search and discover open datasets coming from
heterogeneous sources. Idra uniforms the representation of collected open datasets, thanks to
the adoption of international standards (DCAT-AP) and provides a set of RESTful APIs to be used
by third-party applications.

3.1.6.2 Structural overview

In the context of the URBANITE’s architecture, the Data Catalogue component provides access
to the metadata of the different data sources and their datasets. The component harmonizes
the metadata following DCAT-AP2 standard and provides and unique point of access to search
among the available metadata coming from different and heterogeneous data sources. The

1 https://idra.readthedocs.io/en/latest/
2 https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-
profile-data-portals-europe/release/11

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 27 of 71

following Figure 9 depicts the interaction among the Data Catalogue and the other URBANITE’s
components.

Figure 9: Data Catalogue - Component diagram

The Data Catalogue interacts with 1) Identity/Authorization Management component to allow
administrators to access their specific functionalities retrieving the access token that will be
further provided to the APIs, 2) Advanced Visualization to build visualization taking advantage
of the DCAT-AP distributions it manages and 3) Data Storage & Retrieval to retrieve DCAT-AP
datasets and distribution metadata. Finally, the Data Catalogue component is able to federate
external sources such as Open Data portals or other sources providing DCAT-AP metadata.

Among the APIs provided by the component, the following are used by the administrator to
manage a catalogue and by the user to perform a federated search:

Table 1: Data Catalogue Administration - Retrieve Federated Catalogues

/administration/catalogues

Retrieve the list of the federated catalogues. The administrator accesses additional catalogue’s
information

Headers

Authorization Bearer <token> the administrator token

Responses

200 The catalogues list

400 Bad request

401 Unauthorized

500 Internal Server Error

Table 2: Data Catalogue Administration - Create Catalogue

/administration/catalogues3

3 https://idraopendata.docs.apiary.io/#reference/administration-api/catalogues-resources/post

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 28 of 71

Create a new catalogue into the Data Catalogue component.

Headers

Authorization Bearer <token> the administrator token

Body

Catalogue An object representing the catalogue to be added

Responses

200 The catalogue was successfully created

400 Bad request

401 Unauthorized

500 Internal Server Error

Table 3: Data Catalogue Administration - Update Catalogue

/administration/catalogues/{id}

Update the catalogue identified by the id.

Headers

Authorization Bearer <token> the administrator token

Parameters

Id Id of the catalogues, path parameter

Body

Catalogue An object representing the catalogue to be updated

Responses

200 The catalogue was successfully updated

400 Bad request

401 Unauthorized

500 Internal Server Error

Table 4: Data Catalogue Administration - Retrieve Catalogue

/administration/catalogues/{id}

Retrieve the catalogue identified by the id. The administrator accesses additional catalogue’s
information

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 29 of 71

Headers

Authorization Bearer <token> the administrator token

Parameters

Id Id of the catalogues, path parameter

Responses

200 The catalogue object

400 Bad request

401 Unauthorized

500 Internal Server Error

Table 5: Data Catalogue Administration - Delete Catalogue

/administration/catalogues/{id}

Delete the catalogue identified by the id.

Headers

Authorization Bearer <token> the administrator token

Parameters

Id Id of the catalogues, path parameter

Responses

200 The catalogue was successfully deleted

400 Bad request

401 Unauthorized

500 Internal Server Error

Table 6: Data Catalogue User - Federated Search

/search4

Searches among the metadata of the dataset of the federated catalogues

Parameters

filters An array of the filters to be used. A filter is defined with a field and a value
(e.g. field: ’title’ and value: ‘test’)

4 https://idraopendata.docs.apiary.io/#reference/end-user-api/metadata-search/post

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 30 of 71

rows The number of results to be returned per request.

start The offset in result list from which to start.

nodes The list of the identifier of the catalogues.

Responses

Search Response An object with the following fields:

• count: the number of results found

• results: the list of datasets

• facets: the list of facets

3.1.6.3 Dynamic overview

This section describes the interactions between the Data Catalogue, the Identity/Authorization
Management, the Advanced Visualization and a generic External Source providing DCAT-AP
metadata. The interaction between the Data Catalogue and the Data Storage & retrieval
component are described into section 3.1.5.3.

Figure 10 depicts the high-level interactions of an administrator with the components during the
federation of an external source5. The administrator must login first, providing valid credentials
that are forwarded to the Identity/Authorization Management component that validates the
credentials and returns an access token. The token is used to interact with the Data Catalogue
administrator APIs. The administrator will then add the external source to the Data Catalogue
federation providing some information about the source itself, depending on the nature of the
External Source (for instance, the API endpoint in the case of an Open Data portal). The Data
Catalogue will retrieve from the External Source the DCAT-AP metadata that will be made
available to the user to search datasets.

5 The Data Catalogue will offer a user interface that will be included in the URBANITE UI; to simplify the
representation of the interactions, the URBANITE UI is not represented in the diagrams, but each actions of the
administrator or of the user is executed against the URBANITE UI and then forwarded to the Data Catalogue.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 31 of 71

Figure 10: Data Catalogue - Administrator Sequence diagram

Figure 11 depicts the interactions between a user and the Data Catalogue to build a visualization
taking advantage of the Advanced Visualization component functionalities. The user performs a
search over the DCAT-AP datasets managed by the Data Catalogue component and selects a
dataset among the ones identified by the Data Catalogue. The user then selects a distribution
that is used to build the visualization through the Advanced Visualization component.

Figure 11: Data Catalogue - User Sequence diagram

3.1.6.4 Design implications based on the tool choice

As reported in section 3.1.6.1 the candidate tool for the realization of the Data Catalogue is Idra.
Idra is composed by two components, a backend module and a web portal that offers its user

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 32 of 71

interface (for instance, to allows the users to search among the available datasets); the backend
module provides a set of DCAT_AP REST APIs6 to interact with the platform along with a set of
CKAN7 compliant APIs.

The technological stack of the backend module is made by Java 8, MySQL v5.7, RDF4J Server
v2.2.1 and Apache SOLR-Lucene v6.6.0. The front-end module is based on AngularJs. The
application server used to deploy the platform is Apache Tomcat v8.5. A detailed list of libraries
and frameworks used within Idra is available in its documentation8.

3.2 URBANITE components for data analysis

3.2.1 Controller

3.2.1.1 Main functionality

The Controller is responsible for the orchestration of the components of URBANITE Ecosystem
devoted to the analysis of data. In this sense, the main functionality of the controller is the
management and execution of the workflows that orchestrate the steps to be performed
through these components.

To this aim, the Controller interacts with the other components and services of the URBANITE
Ecosystem. These are linked together through the definition of workflows. For this specific
purpose, Apache Airflow9 has been chosen as the candidate tool for the realization of the
Controller.

Airflow is written in Python language and allows defining workflows following the principle of
“configuration as code”10. Indeed, to manage workflow orchestration in Airflow a file (named
DAG11) should be written in Python to describe a workflow and its tasks. In the URBANITE
Ecosystem, the defined tasks will interact with the components of the URBANITE Ecosystem
itself (in particular with the ones that perform the analysis of the data, but potentially with any
other).

3.2.1.2 Structural overview

The Controller (as the orchestrator of the URBANITE Ecosystem) interacts with diverse
components, as shown in Figure 12.

For instance, the Controller could interact with the Data Storage & Retrieval component to
retrieve the data location and orchestrate all components needed to analyze a specific dataset
(such as a machine learning model to perform predictions) providing them information on how
to access the data they require.

7 https://ckan.org/
8 https://idra.readthedocs.io/en/latest/admin/installation/
9 https://airflow.apache.org/
10 Configuration as code approach allow to define the configuration of a servers, code, or other resources as a text
or script file (configuration file) managed in a repository.
11 DAG stands for Direct Acyclic Graph. A DAG if a workflow definition in python code. More information can be
found at https://airflow.apache.org/docs/apache-airflow/stable/concepts.html?highlight=dag#dags

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 33 of 71

The Controller can execute different workflow, on the basis of specific needs. Figure 12 depicts
a non-exhaustive structural diagram of the relations between the Controller and the other
components of the URBANITE Ecosystem.

Figure 12: Controller - Relations between the Controller and the other components of the URBANITE
Ecosystem

3.2.1.3 Dynamic overview

This section describes how the Controller can interact with the other components of the
URBANITE Ecosystem. Figure 13 depicts a sequence diagram about a hypothetical scenario in
which a generic “actor” (such as another URBANITE component or an end-user) invokes the
execution of a workflow. In this hypothetical scenario, in addition to the Data Storage & Retrieval
component, two generic components for data analysis are involved (Analysis Component A and
Analysis Component B).

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 34 of 71

Figure 13: Controller - Sequence diagram

The flow starts with the “actor” that invokes the Controller to execute a specific workflow.

The Controller orchestrates three different components, respectively: The Data Storage &
Retrieval (to retrieve data location and to store metadata about workflow execution), and two
different components of the analysis layer in the hypothetical scenario are invoked one after
the other.

More specifically, the workflow depicted is divided into two main steps. In the first one, the
controller retrieves and pass data location to the Analysis Component A and then wait for the
completion of the analysis by this last one. Once the analysis is completed, the Analysis
Component A saves the results into the Data Storage & Retrieval. In the second step, the
controller retrieves and pass data location (I.e., results obtained from Analysis Component A) to
the Analysis Component B; also, in this case, the Controller wait for the completion of the
analysis from Analysis Component B. As for the previous step, Analysis Component B saves the
obtained results into the Data Storage & Retrieval. At the end of the entire workflow execution,
even the execution status is saved in the Data Storage & Retrieval too.

3.2.1.4 Design implications based on the tool choice

As reported in section 3.2.1.1 the candidate tool for the realization of the controller component
is Apache Airflow.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 35 of 71

Version 2.X of Airflow is based on Python 3.X language and Flask12 framework. Airflow exposes
a set of RESTful APIs to interact with its functionalities. Some of the most useful APIs are
reported in the following tables. For a more detailed list, you can refer to official
documentation13that provides a detailed Airflow description.

/dags/{dag_Id}/dagRuns

List DAG runs. This endpoint allows specifying the dag_id to retrieve DAG runs.

Parameters

limit : The numbers of items to return. (default value 100)

offset : The number of items to skip before starting to collect the result set.

dag_id *(mandatory): The DAG id.

Responses

200 List of DAG runs

401 Request not authenticated due to missing, invalid authentication info.

/dags/{dag_id}/dagRuns

Trigger a new DAG run.

Parameters

dag_id *(mandatory): The DAG id.

Payload

JSON Object dag_run_id: A string with the Run ID. (If not provided a value will be
generated based on execution_date.)

execution_date: A string with the execution date. This is the time when the
DAG run.

state: A string with the DAG state. Enum: success, running, failed

Responses

200 Success.

400 Client specified an invalid argument.

401 Request not authenticated due to missing, invalid authentication info.

403 Client does not have sufficient permission.

12 https://flask.palletsprojects.com/en/1.1.x/
13 https://airflow.apache.org/docs/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 36 of 71

404 A specified resource is not found.

409 The resource that a client tried to create already exists.

/dags/{dag_id}/dagRuns/{dag_run_id}

Delete a DAG run.

Parameters

dag_id* (String) The DAG Id.

dag_run_id* (String) The DAG run Id.

Responses

204 Success.

400 Client specified an invalid argument.

401 Request not authenticated due to missing, invalid authentication info.

403 Client does not have sufficient permission.

/dags/~/dagRuns/list

This endpoint is a POST to allow filtering across a large number of DAG IDs, whereas a GET it would run
into maximum HTTP request URL length limit.

Payload

JSON Object dag_runs: array of these elements

• dag_id: A string with the DAG ID.

• dag_run_id: A string with the Run ID.

• execution_date: A string with the execution date. This is the time
when the DAG run.

• state: A string with the DAG state.

Responses

200 Success.

400 Client specified an invalid argument.

401 Request not authenticated due to missing, invalid authentication info.

403 Client does not have sufficient permission.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 37 of 71

3.2.2 Data Projection

3.2.2.1 Main functionality

The data projection module provides functionality that allows the projection of data into lower
dimensions and other transformations.

We are considering specific functionality:

• PCA (principal component analysis) is used to decompose a multivariate dataset into
lower dimensionality while maximizing the amount of variance.

• Factor analysis is similar to PCA; however, the resulting components are not necessarily
orthogonal.

• ICA (independent component analysis) allows the separation of a multivariate signal into
additive, maximally independent components.

All these methods can be visualized to provide insight of some of the dataset’s attributes, e.g.
recognition of inherent clusters. The following methods have the advantage of being interactive
when appropriately visualized:

• Projection pursuit is a method that generates a projection of datasets into lower
dimensionality in a way that maximizes the projection’s interestingness – the measure
of interestingness is typically deviation from the normal distribution.

Targeted projection pursuit is a similar method with the advantage of interactivity. The user can
manipulate the projection directly by using interactive visualizations.

3.2.2.2 Structural overview

 /dataProjection/pca

Create and fit a new PCA model on the data.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

200 Ok

400 Bad request

/dataProjection/pca
Returns the data, transformed using the PCA model.

Parameters

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 38 of 71

Responses

200 ok

400 Bad request

 /dataProjection/factorAnalysis
Create and fit a factor analysis model on the data.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

200 Ok

400 Bad request

/dataProjection/factorAnalysis
Returns the data, transformed using the factor analysis model.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

JSON data object

200 Ok

400 Bad request

3.2.3 Data Clustering

3.2.3.1 Main functionality

The main functionality of this module is to enable the clustering of the available data. More
specifically, we are considering the following functionalities:

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 39 of 71

• K-Means clustering is a standard way of clustering data based on Euclidean distance. As
this method is computationally effective, it is appropriate to use large datasets, as long
as the clusters are somewhat balanced. This method cannot be used on serial data such
as time series or series of locations.

• The affinity propagation method can be used on more complicated data types, including
serial data and performs well even when the clusters are heavily unbalanced. Due to
higher computational complexity, it is not appropriate for large data sets. The main use
of this method will be used to cluster simulated trips and construct of traffic data
models.

• Spectral clustering is a clustering method that is especially appropriate for clustering
graph data and distance matrices. This method will be used to cluster simulated trips
and generate traffic pattern models.

• Hierarchical clustering is a clustering method that is highly appropriate for clustering
demographical data. The results of this method are highly intuitive hierarchical trees
that can be easily explained and understood.

3.2.3.2 Structural overview

 /dataCluster/k_means
Create and fit a K-Means model on the data.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

JSON – uuid of the created and trained model.

200 Ok

400 Bad request

 /dataCluster/k_means
Use an existing model to cluster the data.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

Pre-trained model uuid
(integer)

Uuid of the selected pre-trained clustering model.

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 40 of 71

200 Ok

400 Bad request

/dataCluster/k_means
Returns the data, transformed using the K-Means model.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

JSON projected data, according to the NGSI specification.

200 Ok

400 Bad request

Similar API endpoints will be defined for other clustering methods discussed.

3.2.4 Self Organizing Map

3.2.4.1 Main functionality

The main functionality of Self-Organizing Maps is to enable an interactive overview of different
data that cover the same population. SOMs are commonly used to generate low-dimensional
(typically 2-D) views of high-dimensional data.

The Self-Organizing Map will be used for exploratory data visualizations implemented by the
Advanced visualization module.

3.2.4.2 Structural overview

 /som
Create and fit a new self-organizing map model.

Parameters

model* (String) Name of the data model, e.g. TrafficFlowObserved

Attribute* (string) (Optional) name of the primary attribute for initial clustering.

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

JSON – uuid of the created and trained model, values of the map according to training attribute.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 41 of 71

200 Ok

400 Bad request

 /som
Create and fit a new self-organizing map model.

Parameters

Attribute* (String) Selected attribute to visualize

Uuid* (String) Uuid of the selected pre-trained self-organizing map model

Responses

JSON – values of the map according to the selected attribute.

200 Ok

400 Bad request

3.2.4.3 Dynamic overview

The self-organizing map must first be created and trained using selected data. After training, the
SOM will be visualized using the advanced visualization module. The attribute shown on the
visualization of the SOM can be selected, and values will be updated accordingly.

3.2.4.4 Design implications based on the tool choice

None.

3.2.5 Correlation discovery

3.2.5.1 Main functionality

Correlation discovery is a process that highlights correlated attributes across data sets. The
module will highlight interesting relations and help the users identify previously unknown data
relations.

Main functionality includes:

• Loading the data.

• Pair-wise search for highly correlated attributes.

• Retrieval of partial results.

• Stopping the search on user input

3.2.5.2 Structural overview

 /correlation/data
Create a new correlation discovery object dased on selected data.

Parameters

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 42 of 71

model* (String) Name of the data model, e.g. TrafficFlowObserved

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

data* (JSON Array) Transformed data according to the NGSI specification.

Responses

JSON – uuid of the created model.

200 Ok

400 Bad request

 /correlation/status
Get the status of the correlation search and partial results when available.

Parameters

uuid* (String) Identifier of the selected correlation discovery object.

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

Responses

JSON – status of the correlation discovery (TBD), partial results (pairs of attributes and their
correlations).

200 Ok

400 Bad request

 /correlation/data
Get the complete correlation discovery results.

Parameters

uuid* (String) Identifier of the selected correlation discovery object.

zone* (String) Name of the geographic zone (e.g.: “Helsinki”)

Responses

JSON – results (pairs of attributes and their correlations).

200 Ok

400 Bad request

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 43 of 71

3.2.5.3 Dynamic overview

After the data is loaded, correlations of attributes are calculated pairwise in the order provided
by a heuristic function. Because of this we can expect that attribute pairs with higher
correlations will be discovered sooner, making the partial results useful even before the
algorithm finishes.

The final results can be retrieved after the algorithm is stopped by the user or has calculated all
the pairwise correlations.

3.2.5.4 Design implications based on the tool choice

None.

3.2.6 Prediction

3.2.6.1 Main functionality

To perform heuristic prediction for the vehicle flow at a location within the city by the processing
of historic values measured by a fixed sensor and other information.

3.2.6.2 Structural overview

This component provides APIs for performing the different actions related to the predictive
process. Specifically:

• List information about the sensors available for each city. This information includes the
location, size of the data set, frequency and others.

• Train a new predictive model for a particular sensor.

• Query an existing model to obtain a prediction.

• List the models that are already available and the characteristics of them.

 /traffic/pred
To obtain an individual prediction

Parameters

features* (array) Array of values to perform a query

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

id* (string) Sensor identification (i.e. 248 for Bilbao, 62_1 for Helsinki)

Inference_type 0: Bayesian inference

1: Random Forest

Responses

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 44 of 71

200 Ok
{ "code": 200, "lower": 48, "method": "GET", "num_vals": 47, "pred":
66.1368900352121, "upper": 87, "version": 0.1 }

400 Bad request

/traffic/pred

To train specific model

Parameters

 No parameters

Request Body (JSON with the following fields)

Ini_date %YYYY-%M-%D

End_date %YYYY-%M-%D

Num_features 1: [slot of the day]
2: [slot of the day, weekday]
3: [slot,weekday,month]
4: [slot,weekday,month,holiday]
5: [slot,weekday,month,holiday,schoolDay]
6: [slot,weekday,month,holiday,schoolDay, temperature]
7:[slot,weekday,month,holiday,schoolDay,temperature, precipitation]
8:[slot,weekday,month,holiday,schoolDay,temperature,
precipitation,cruiseArrival]
9: other TBD

Inference_type 0: Bayesian inference

1: Random Forest

city 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

id Sensor identification.

Responses

200 ok

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 45 of 71

traffic/pred_date

To obtain a prediction for a full day

Parameters

features* (array) Array of values to perform a query (should be in accordance with the date
given)

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

id* (string) Sensor identification (i.e. 248 for Bilbao, 62_1 for Helsinki)

Inference_type 0: Bayesian inference

1: Random Forest

Responses

200 Ok
{ "method": "GET",

"result": [{ "lower": 8, "num_vals": 48, "pred":
15.474470722789533, "time": "2021-06-12 00:00:S", "upper": 29 },
{ "lower": 7, "num_vals": 48, "pred": 13.696208371999424,
"time": "2021-06-12 00:05:S", "upper": 24 }, …,

 { "lower": 8, "num_vals": 48, "pred": 17.252187718095623,
"time": "2021-06-12 23:55:S", "upper": 26 }]}

400 Bad request

 /traffic/models

To obtain a list of the models already available within the platform

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

id (string) Sensor identification (i.e. 248 for Bilbao, 62_1 for Helsinki)

Responses

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 46 of 71

200 Ok
JSONArray

400 Bad request

 /traffic/sensor

To obtain information about an individual sensor

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

id* (string) Sensor identification (i.e. 248 for Bilbao, 62_1 for Helsinki)

Responses

200 Ok
{ "code": 200, "delta_t": 5, "end_date": "2020-01-01 00:00:00",
"ini_date": "2019-01-31 00:00:00", "lat": 60.176326, "lon": 24.958575,
"method": "GET", "size": 96481, "version": 0.1}

400 Bad request

 /traffic/sensors

To obtain all the ids of the sensors for a given city

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Responses

200 Ok

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 47 of 71

{ "code": 200, "ids": ["62_1", "62_2"], "method": "GET", "version":
0.1}

400 Bad request

 /traffic/sensors_ext

To obtain all the information of the sensors for a given city

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Responses

200 Ok

{ "code": 200, "ids": [{ "delta_t": 5, "end_date": "2020-01-01
00:00:00", "id": "621", "ini_date": "2019-01-31 00:00:00", "lat":
60.176326, "lon": 24.958575, "size": 96481 }, { "delta_t": 5,
"end_date": "2020-01-01 00:00:00", "id": "622", "ini_date": "2019-
01-31 00:00:00", "lat": 60.176326, "lon": 24.958575, "size": 96481
}], "method": "GET", "version": 0.1}

400 Bad request

3.2.6.3 Dynamic overview

The steps to obtain predictions for the flux of vehicles at a specific point, in general, involves the
following steps:

• Choosing the location at which the prediction is going to be performed. In order to find
the available locations, the user can check the positions of the sensors for the different
cities. The services /traffic/sensors and /traffic/sensor provide information not only
about the location but also about the data within the platform.

• Once the id of the sensor and the city has been chosen and in order to perform a
prediction, a predicting model needs to be constructed and trained within the platform.
The service /traffic/models/ list the different already available models.

• If there is no appropriate model within the URBANITE platform, a new model needs to
be constructed. The training of a new model is performed the POST /traffic/pred model.
This service only sends to command to start training the model, this is a costly process
that can take a long period of time, which implies that from the command is issued until
the new model is available can take a while.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 48 of 71

For training a new model, the number of features to be considered in the model need
to be specified; the following cases are considered within this module:

1: [slot of the day]
2: [slot, weekday]
3: [slot, weekday, month]
4: [slot, weekday, month, holiday]
5: [slot, weekday, month, holiday, schoolDay]
6: [slot, weekday, month, holiday, schoolDay, temperature]
7: [slot, weekday, month, holiday, schoolDay, temperature, precipitation]
8: [slot, weekday, month, holiday, schoolDay, temperature, precipitation, cruiseArrival]
 … other possibilities to be defined.

• Once the model is available, the prediction can be performed, providing the parameters,
the feature vector that corresponds to the moment when the prediction is requested.
Two different GET services can be used: /traffic/pred, which provides a prediction at a
particular instant of time and /traffic/pred_date, which provides a 24 hour expansion of
predictions. In the former case, the number of predictions depends on the frequency of
the data for the sensor located.

3.2.6.4 Design implications based on the tool choice

None.

3.2.7 Analytical Framework

3.2.7.1 Bicycle Analysis

3.2.7.1.1 Main functionality

This module involves several services with various functionalities related to the mobility of
bicycles. More specifically, the module transforms GPS information obtain from the bicycles into
more useful and actionable information. It also provides auxiliary services helpful in these
transformations.

The following functionalities are considered:

• Computation of origin-destination matrixes (OD matrixes)

• Computation of the locations more popular for the bicycle trajectories stored within the
platform.

• Computation of the trajectories more popular among the bicycle trajectories stored
within the platform.

The following auxiliary functionalities, not necessarily for bike trajectories but applicable to data
in general, are considered:

• Computation of Voronoi areas. Compute the tessellation of the city map composed of
polygons that correspond to the points placed closest to a given set of points.

• Map-Matching of trajectories. Adjust a set of GPS points to the navigational network
and perform reconstruction of the trajectories connecting the corrected locations.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 49 of 71

3.2.7.1.2 Structural overview

 /bikeAnalysis/od_matrix

Parameters

city* (integer) 0: Bilbao

1: Amsterdam

2: Helsinki

3: Messina

Inference_type 1: Bayesian
2: Random Forest

features Array type of minimum size equal to 2, corresponding to the integers which
define the zone_id for the origin and the destination.

Responses

200 Ok

400 Bad request

/bikeAnalysis/od_matrix

Create and train a new model for the computation of OD matrix

Parameters

 No parameters

Request Body (JSON with the following fields)

Ini_date %YYYY-%M-%D

End_date %YYYY-%M-%D

Inference_type 1: Bayesian inference

2: Random Forest

city 0: Bilbao

1: Amsterdam

2: Helsinki

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 50 of 71

3: Messina

num_features 0: no extra features considered, only Origin and Destination (OD).
1: OD + [slot]
2: OD + [slot, weekday]
3: OD + [slot, weekday, month]
4: OD + [slot, weekday, month, holiday]
5: OD + [slot, weekday, month, holiday, school_day]
6: others TBD

delta_t Discretization of time. Needed to compute the slot within a day. Typical
values 15 mins, 60 mins. The computation of the OD-Matrix integrates all
the trips realized within the given time interval.

polys Geojson of type FeatureCollection that consists polygons defining the
origins and the destinations for the output matrix. Each polygon should
include an integer property “zone_id” used internally to identify each
polygon.

Responses

200 ok

 /bikeAnalysis/trajectory_analysis

Parameters

city* (integer) 0: Bilbao

1: Amsterdam

2: Helsinki

3: Messina

analysis_type 0: computation of popular points
1: computation of popular trajectories

2: TBD

features Array that defines the features considered for the analysis.

Responses

200 Ok

For analysis_type equal 0 a collection of points with an index of popularity.
The collection of points includes all the points in the navigational network.

For analysis_type equal 1, a collection of trajectories.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 51 of 71

400 Bad request

/bikeAnalysis/ trajectory_analysis

Create and train a new model for the computation of O/D matrix

Parameters

 No parameters

Request Body (JSON with the following fields)

Ini_date %YYYY-%M-%D

End_date %YYYY-%M-%D

analysis_type 0: computation of popular points
1: computation of popular trayectories

2: TBD

city 0: Bilbao

1: Amsterdam

2: Helsinki

3: Messina

num_features 0: no extra features considered,.
1: [slot]
2: [slot, weekday]
3: [slot, weekday, month]
4: [slot, weekday, month, holiday]
5: [slot, weekday, month, holiday, school_day]
6: others TBD

delta_t Discretization of time. Needed in order to compute the slot within a day.
Typical values 15 mins, 60 mins.

Responses

200 Ok

/bikeAnalysis/voronoi_areas

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 52 of 71

Produces the Voronoi areas for a given set of points.

Parameters

 No parameters

Request Body

GeoJSON of type FeatureCollection. The collection consists of:

N features of type Points, each with an integer property “name” used internally to give a zone_id to
the resulting polygons.

A single feature of type LineString which defines the city limits and bounds the resulting polygons.

Responses

JSON

{

"code": 200,

"method": "PUT",

"polys": {GEOJSON of type “FeatureCollection” that consists of polygons defining the origins and the
destinations for the output matrix. Each polygon should include an integer property “zone_id” used
internally to identify each polygon.},

“version”: 0.1
}

200 ok

/bikeAnalysis/mm

Clean a trajectory performing Map Matching to the Navigational network.

Parameters

 No parameters

Request Body (JSONArray)

With at least two elements of the following type:

t Timestamp in milliseconds at which the GPS capture has been obtained

la Float that corresponds to the latitude of GPS capture using WGS 84
Projection.

lo Float that corresponds to the longitude of GPS capture using WGS 84
Projection.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 53 of 71

Responses

(JSONArray) same type of output as the input but corrected.

200 ok

3.2.7.1.3 Dynamic overview
For the Origin Destination functionality, a set of polygons need to be passed to the service. In
order to obtain a proper tessellation, the Voronoi service can be called to produce a proper
geojson of polygons to be consumed by the OD matrix service.

For the trajectory_analysis, the trajectories need to be matched to the navigational network;
this can be obtained by means of the map-matching (MM) service.

3.2.7.1.4 Design implications based on the tool choice
None

3.3 URBANITE components for decision support

3.3.1 Traffic simulation

3.3.1.1 Main functionality

Is to provide the simulations of traffic under specified conditions. Those include the proposed
mobility policy, different weather conditions, changes to the traffic infrastructure etc. The traffic
simulation will support:

• Importing the traffic network of the city as provided by the geographic maps from
OpenStreetMap.

• Importing district shapes in order to correctly interpret the demographical data.

• Generating the population model according to the demographical data of the city.

• Generating the traffic demand model according to the population model and available
traffic data.

• Multi-modal traffic simulation including: cars, bicycles, public transport, heavy traffic
and pedestrians.

• Access to the simulation results for further analysis and visualizations.

3.3.1.2 Structural overview

/trafficSimulation/scenario

Creates a new and empty simulation scenario.

Parameters

Simulation sceraio uuid integer

Description string

Name string

City (integer) 0: Bilbao

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 54 of 71

1: Amsterdam
2: Helsinki
3: Messina

Request Body – empty

Responses

200 ok

400

/trafficSimulation/network

Imports the network file and include it in the simulation scenario.

Parameters

Level of detail (integer) 0: all streets and roads
1: collector streets, arterial streets and main roads
2: arterial streets and main roads
3: main roads only

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki

3: Messina

Request Body

XML Network file (as defined: "http://www.matsim.org/files/dtd/network_v2.dtd")

Responses

200 ok

400

/trafficSimulation/district_shapes

Imports the shape files of the city districts.

Parameters

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 55 of 71

Request Body

Shapefile of districts shapes (ESRI Shapefile)

Responses

200 ok

400

/trafficSimulation/demo_data

Imports the demographical data for population model generation.

Parameters

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

Request Body

Demographical data per district (TBD)

Responses

200 ok

400

/trafficSimulation/population_model

Generate the population model based on demographical data and parameters.

Parameters

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

TBD

Request Body – empty

Responses

200 ok

400

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 56 of 71

/trafficSimulation/traffic_demand_model

Generate the traffic demand model based on the population model and parameters.

Parameters

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

TBD

Request Body – empty

Responses

200 ok

400

/trafficSimulation/vehicles

Import the vehicles definition files.

Parameters

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

Request Body

Vehicle definition files (http://www.matsim.org/files/dtd/vehicleDefinitions_v1.0.xsd)

Responses

200 ok

400

/trafficSimulation/results

Retrieve the simulation results for analysis and visualizations.

Parameters

Simulation scenario uuid integer

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 57 of 71

City (integer) 0: Bilbao
1: Amsterdam
2: Helsinki
3: Messina

Request Body - empty

Responses

200 ok

400

3.3.1.3 Dynamic overview

The traffic simulation needs to be prepared before running it. In order to provide the required
data, the following data needs to be provided to the traffic simulation service:

• Traffic network is generated using the city maps. Based on the target scenario
different subsets of the network edges and vertices, for example, the whole city, only
main roads, a specific part of the city, or only the main roads in a specific part of the
city.

• Population demand is generated based on the known demographical data. In order to
enable the simulation of hypothetical scenarios or certain mobility policy proposals,
the population model can be parametrized.

• Different types of vehicles are represented with appropriate attributes. These need to
be set up appropriately to the task, e.g. when analyzing air quality, the emissions of
the vehicles are needed.

• The traffic demand model is generated and optimized based on agents’ local
knowledge.

• The traffic demand model is refined using the available traffic data.

• The simulation is run, and the results gathered.

3.3.1.4 Design implications based on the tool choice

Due to the selection of the traffic simulation tool MATSim, the process of preparing the
simulation scenarios and running the simulation has been appropriately changed to support the
requirements of the URBANITE project.

• The process of preparing the simulations is guided by a wizard-like UI construct in
order to simplify the preparation and enable the non-technical users to use the traffic
simulation module.

• Importing traffic network from OpenStreetMaps is streamlined and a third-party
network editor is provided.

The population model is generated in a multi-step process that enables the parametrization of
the population model, gives the users control over the traffic demand generation process and is
compatible with the tool’s technical requirements

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 58 of 71

3.3.2 Policy simulation and validation

3.3.2.1 Main functionality

The main functionality of the policy simulation and validation module is to enable the encoding
of the proposed policies, design the validation scenarios and validate the policy using the traffic
simulation and KPI calculation, thus enabling the policy validation.

3.3.2.2 Structural overview

TBD

3.3.2.3 Dynamic overview

TBD

3.3.2.4 Design implications based on the tool choice

TBD

3.3.3 Recommendation engine

3.3.3.1 Main functionality

The main functionality of the recommendation engine is to support the process of the mobility
policy design; more specifically, it will offer recommendations for creating the evaluation
scenario and evaluation framework for the proposed policies:

• Support the generation of evaluation scenarios for specific proposed policies using a
scenario creation wizard UI tool.

• Support the selection of appropriate KPIs and enabling their calculation.

• Support the definition of the decision model, including choosing the attributes.

• Enable the comparison of multiple policies with the same evaluation framework.
The steps considered for the scenario creation wizard are the following:

• Select the map region that will be simulated.

• Select the level of detail for the region.

• (Optionally) use a network editing tool to introduce changes to the network.

• Select the relevant KPIs from the list of available KPIs.

• (Optionally) select the relevant simulation attributes and define the calculation of
custom KPIs.

• Define the decision model by selecting the relevant attributes, the attribute and KPI
hierarchy and the decision rules for the comparison of different evaluation scenarios.

• (Optionally) select the optimizations of proposals when applicable, including metrics to
minimize/maximize.

• Select the proposed variations of the evaluation’s scenarios based on available data,
such as:

• Weekday traffic demand variation vs weekend traffic demand.

• Sunny, rainy and snowy variations of the traffic demand.

• Number of randomized variations to consider.
Using multiple variations of evaluation simulations will ensure the robustness of the KPI
calculations.

Using the proposed process, the module provides:

• Multi-criteria decision analysis for comparing mobility policy proposals.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 59 of 71

• Robust calculations of KPIs.

• Provide recommendations for creating the evaluation scenario.

• Provide an evaluation framework for the policy proposals.
Provide a mechanism for comparison of policy proposals using a common framework.

3.3.3.2 Structural overview

/recommendation/decision_model

Create or replace the wizard-generated decision model.

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Scenario uuid integer

Attributes array JSON array of attributes

Scales array JSON array of scales corresponding to attributes

Hierarchical decision
model

JSON tree structure of the attributes

Decision rules JSON dictionary of rules for attribute agglomeration

Responses

200 Ok

400 Bad request

/recommendation/kpi

Create or replace a KPI.

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Scenario uuid integer

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 60 of 71

Attributes array JSON array of attributes required to calculate the KPI.

Function The function that calculated the KPI.

Optimize Boolean – should the simulation optimize for this KPI or not

Optimization target
(optional)

0: minimize KPI

1: maximize KPI

Responses

200 Ok

400 Bad request

/recommendation/scenario_variation

Create or replace variations of a scenario.

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Scenario uuid integer

Attributes array JSON array of attributes to vary

Values Values of the attribute to be simulated.

Responses

200 Ok

400 Bad request

/recommendation/scenario_evaluate

Start the evaluation of the generated scenario.

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 61 of 71

3: corresponds to Messina

Scenario uuid integer

Responses:

JSON including results of decision analysis, KPIs calculated

200 Ok

400 Bad request

/recommendation/results

Start the evaluation of the generated scenario.

Parameters

city* (integer) 0: corresponds to Bilbao

1: corresponds to Amsterdam

2: corresponds to Helsinki

3: corresponds to Messina

Scenario uuid integer

Responses

200 Ok

400 Bad request

3.3.3.3 Dynamic overview

The proposals are described, and an evaluation scenario is generated for each of the proposals.
For each evaluation, scenario variations are generated based on the user’s input. Each variation
is then simulated, and the results are collected.

The user selects the appropriate KPIs and is optionally guided to create custom KPIs based on
choosing the relevant attributes and defining the function to calculate.

The user is guided through the creation of a decision model used for the comparison of
proposals. The decision model, including the decision attributes, scales, rules, and hierarchical
model, is stored.

Using the results of the simulations, selected and custom KPIs are calculated. These can be
retrieved for visualization and further analysis.

Using the calculated KPIs the decision model performs multi-criteria decision analysis. The
results of the decision analysis can be retrieved for visualisation or further analysis.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 62 of 71

3.3.3.4 Design implications based on the tool choice

None.

3.3.4 Advanced visualization

3.3.4.1 Main functionality

The main functionality is to provide a different kind of visualizations, appropriate to the data
displayed. The advanced visualizations module will consist of the front-end implementation of
visualization methods and calls to appropriate API endpoints to get the data to represent.

Specific visualization types considered are detailed in the URBANITE deliverable D4.1.

The main functionality includes:

• Retrieve the data to visualize.

• Allow the selection of visualization type to use.

• (Optionally) recommend the appropriate visualization type based on the metadata.

• Interact with visualizations (when applicable).

3.3.4.2 Structural overview

This module is implemented on the front-end. It will consist of UI elements needed for showing
the visualizations, local storage for visualization data and call-backs to appropriate API
endpoints.

3.3.4.3 Dynamic overview

After the user selects data to visualize, the data will be retrieved from the appropriate service,
and minimal data needed for visualizations will be stored locally.

Appropriate visualizations will be proposed based on the metadata available. The user will be
able to choose among the proposed visualizations as well as other types of visualisation.

3.3.4.4 Design implications based on the tool choice

3.4 URBANITE virtual SoPoLab

3.4.1 Main functionality

The Virtual SoPoLab, also called URBANITE Forum14, offers a virtual environment where citizens
discuss and propose new ideas and/or challenges following a co-creation approach. This
component takes advantage of the participatory democracy platform Decidim15. Within
URBANITE, the Virtual SoPoLab leverages the Assembly16 functionality provided by Decidim to
manage and organize discussions and interactions among the users.

Figure 14 depicts the main actors and functionalities of the Virtual SoPoLab.

14 https://forum.urbanite-project.eu/
15 http://decidim.org/
16 https://docs.decidim.org/en/features/participatory-spaces/#_assemblies

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 63 of 71

Figure 14: Virtual SoPoLab - Use Cases diagram

The Organization Administrator is in charge of managing the entire Virtual SoPoLab and he/she
is the only one able to create new assemblies. Moreover, this user can perform every operation
within the Virtual SoPoLab; indeed, he/she is able to also manage assemblies.

Considering the functionalities of the assemblies, the following roles can be defined:
Administrator, Collaborator, Valuator and Moderator. The Administrator is able to manage the
entire assembly functionalities; the Collaborator manages the component (such as blog, forum,
etc.) to be made available within an assembly, assigns proposal to a Valuator or evaluate the
proposal by himself/herself; the Valuator assesses the proposals; and the Moderator moderates
the assembly content, if any report from citizens is provided.

The Citizens can start new debates or participate in the existing ones providing comments; they
can create new proposals to be further evaluated by the administrators; they access to the blog
posts provided by the administrators, and they can create reports on existing contents that will
be further checked by the moderators.

Additional details about the Virtual SoPoLab (URBANITE Forum) can be found in the URBANITE
Forum guide17.

3.4.2 Structural overview

Even if the Virtual SoPoLab is not strictly part of the URBANITE Ecosystem (ad depicted in section
2.1), some potential interactions between the Virtual SoPoLab and the rest of the URBANITE
Ecosystem are planned. For instance, a potential interaction would consist of giving to the user

17 https://urbanite-forum-guide.readthedocs.io/en/latest/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 64 of 71

the chance to integrate the visualization provided by the Advanced Visualization component
(section 3.3.4) to the proposals and/or the debates managed in the Virtual SoPoLab to drive the
discussion among the users. The interaction between the two components (the Virtual SoPoLab
and the Advanced Visualization components) is depicted in Figure 15.

Figure 15: Virtual SoPoLab - Component diagram

The Virtual SoPoLab exposes a GraphQL18 interface to query its database.

3.4.3 Dynamic overview

Figure 16 depicts the expected flow of the possible interactions between the Virtual SoPoLab
and the Advances Visualization components to include in a proposal or debate.

18 https://graphql.org/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 65 of 71

Figure 16: Virtual SopoLab - Sequence diagram

The first step consists of a user that wants to create a new proposal or debate in the Virtual
SoPoLab. The Virtual SoPoLab retrieves the available visualizations from the Advanced
Visualization component and lists them to the user. Then the user selects a visualization to be
added to the new proposal or debate. Finally, the Virtual SoPoLab add the selected visualization,
store the proposal or debate and returns the newly created element (the proposal or the
debate) to the user.

3.4.4 Design implications based on the tool choice

Decidim (the tool selected for the realization of the Virtual SoPoLab) is a Ruby on Rails19
application composed of several gems20 that can be enabled and/or disabled to create a custom
version of the platform. Moreover, additional gems can be created and added to Decidim to
provide new functionalities within the Virtual SoPoLab. The database used within the Virtual
SoPoLab is PostgreSQL21 v10. The platform also supports a deployment based on docker.

3.5 Integrated URBANITE UI

3.5.1 Main functionality

The URBANITE UI component is intended to be the first point of access to the different
components of the URBANITE platform. The several options for integrating the components into
the URBANITE UI are described in the Deliverable D5.3 Integration Strategies [2]. For instance,

19 https://rubyonrails.org/
20 A gem is a software package which contains a packaged Ruby application or library.
21 https://www.postgresql.org/

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 66 of 71

the URBANITE UI will offer the possibility to integrate cockpits or dashboards taking advantage
of the capabilities provided by the Advanced Visualization component.

Figure 17 illustrates the main actors and use cases of the URBANITE UI.

Figure 17: URBANITE UI - Use Case diagram

The Administrator is in charge of managing the configurations of the component and the users.
End Users through the UI, will access the different integrated modules. Moreover, they will be
able to create, modify or delete pages taking advantage of the visualizations provided by the
Advanced Visualization component. Finally, the user will be able to share these created pages
among each other.

3.5.2 Structural overview

The URBANITE UI, being the entry point of the different modules of the platform, will mainly
interact with most of them. Considering the use cases depicted in Figure 17, the URBANITE UI
interacts with the Identity/Authorization Management component and the Advanced
Visualization components. The Figure 18 depicts the interactions at the component level.

Figure 18: URBANITE UI - Component diagram

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 67 of 71

The UI interacts with the Identity/Authorization Management component to retrieve the
authentication token for an existing user or to allow a new user to register. Once the user logs
in into the UI, he/she will interact with the Advanced Visualization component to retrieve the
visualization that will be used to create and share pages.

The URBANITE UI will expose the functionalities to create, read, update and delete the pages.
Moreover, the Share Page interface will be used to share a page with other user and/or to a
group of users.

3.5.3 Dynamic overview

The following Figure 19 depicts the interactions among the components to create a new page
for the user taking advantage of the visualizations provided by the Advanced Visualization
component.

Figure 19: URBANITE UI - Sequence diagram

To access the URBANITE UI the user should provide credentials that are validated over the
Identity/Authorization Management component. Providing valid credentials, the
Identity/Authorization Management component will return an authentication token to the user
that will allow to access the URBANITE UI. From the UI, the user builds his/her custom page. The
UI retrieves the available visualizations from the specific Advanced Visualization modules. The
visualizations will be used through the UI to compose a custom page that will finally be stored.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 68 of 71

3.5.4 Design implications based on the tool choice

The URBANITE UI is a front-end application built using ngx-admin22 framework. This framework
is based on Angular23 and a Nebular24, an Angular UI Library that provides Eva Design System25
features.

To allow users to create and manage their custom pages, a backend module is going to be
provided. This module is a SpringBoot26 application, written in Java, that exposes a set of REST
API to manage the CRUD operations for the pages and to share such pages among the users. The
underlying database is MongoDB27.

3.6 Identity/Authorization Management

3.6.1 Main functionality

The Identity/Authorization Management component is in charge of securing the access to the
other URBANITE’s component, resources and services, whether security is needed. It will
manage the authentication and authorization of the users to access the different functionalities
of URBANITE Platform. The candidate tool for the realization of this component is Keycloak28, an
open-source Identity and Access management tool, that adopt standard protocols such as
OpenID Connect29, Oauth230 and SAML31. Moreover, among the several functionalities, Keycloak
allows to configure single-sing on, to login using social accounts (e.g. GitHub, Google) and offers
an administration console. Finally, the tool allows managing users and applications, giving the
chance to register, modify or delete new user or application. Please, refer to the official
documentation32 for further details.

3.6.2 Structural overview

Each component in the URBANITE’s architecture could be configured to interact with the
Identity/Authorization Management component if authentication and authorization
functionalities are needed. Sections 3.1.6.2 and 3.5.2 describes the interactions between the
Identity/Authorization component and the Data Catalogue component (3.1.6.2) and the
URBANITE UI (3.5.2). The backend functionalities provided by these components are configured
as Resource Servers33 and the Identity/Authorization component is in charge of authorizing each
request following if needed, specific role-based rules. Integrations with other tools could be
performed following the same solution described previously.

Keycloak provides a set of REST APIs34 for administering the tool. Moreover, it provides the
Oauth2 standard set of APIs.

22 https://akveo.github.io/ngx-admin/
23 https://angular.io/
24 https://akveo.github.io/nebular/
25 https://eva.design/
26 https://spring.io/projects/spring-boot
27 https://www.mongodb.com/
28 https://www.keycloak.org/
29 https://openid.net/connect/
30 https://oauth.net/2/
31 http://saml.xml.org/saml-specifications
32 https://www.keycloak.org/documentation
33 https://www.oauth.com/oauth2-servers/the-resource-server/
34 https://www.keycloak.org/docs-api/12.0/rest-api/index.html

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 69 of 71

3.6.3 Dynamic overview

The tool supports the standard Oauth2 flows, such as the Authorization Code Flow, the Implicit
Flow, the Resource Owner Password Credentials Grant (Direct Access Grant) and the Client
Credentials Grant. High-level interactions are depicted in Figure 10 and Figure 19, where the
Identity/Authorization Management component interacts with the Data Catalogue and the
URBANITE UI.

3.6.4 Design implications based on the tool choice

Keycloak is available in different versions35. Among such versions, the tool provides guides to
deploy it as a native application over OpenJDK36 or using a docker-based deployment37.

35 https://www.keycloak.org/getting-started
36 https://www.keycloak.org/getting-started/getting-started-zip
37 https://www.keycloak.org/getting-started/getting-started-docker

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 70 of 71

4 Conclusions

This document provides a detailed description of the entire global architecture of the URBANITE
ecosystem and provides a general representation.

The document also shows a deeper analysis, both structural and behavioural, of each
component of the architecture identifying interactions and dependencies among them.

The architecture depicted here is the base for the first integrated version for URBANITE
Ecosystem, due to the end of June. Regarding the requirements defined in D5.1 [3] for this
month 15th and the state of the research achieved and applied on the component’s
implementation. That version will be a part of this proposed schema, with the components
needed to support a basic scenario. That basic scenario will be defined in parallel with the
elements of the first integrated version.

The experience of making that basic scenario run in this first platform could lead to an evolution
of the components as well as of the schema of the planned architecture. These changes will be
reflected in future versions of the architecture and explained in the deliverables resulted from
the different work packages as well as in the documents related to those future versions of the
URBANITE platform.

This schema is the result of technical decisions taken by the partners during the initial
discussions regarding technical aspects of the solution. The deployment of this platform will
follow the DevOps methods and mechanisms described in the D5.6 deliverable [4], made within
this same work package.

This document will be updated in subsequent versions in M27 and M33, reflecting the advances
in the decisions and implementation of the URBANITE Key Results and components.

D5.4 – URBANITE Detailed architecture-v1 Version 2.0 – Final. Date: 31.03.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 71 of 71

5 References

[1] URBANITE Consortium, «D5.1 Detailed requirements specification-v1,» 2020.

[2] URBANITE Consortium, «D2.2 Mapping of Stakeholders,» 2021.

[3] URBANITE Consortium, «D5.3 - Integration Strategies,» 2020.

[4] URBANITE Consortium, «D5.6 URBANITE DevOps Infrastructure,» 2021.

