
D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 88

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D3.8

Data aggregation and storage module implementation v2

Editor(s): TEC, ENG

Responsible Partner: TECNALIA

Status-Version: Final – v2.0

Date: 30.09.2022

Distribution level (CO, PU): PU

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 88

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable:
Data aggregation and storage module implementation
v2

Due Date of Delivery to the EC: 30.09.2022

Workpackage responsible for the
Deliverable:

WP3–Data Management Platform

Editor(s): TEC

Contributor(s): TEC, ENG

Reviewer(s): Fraunhofer FOKUS

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5

Abstract: This deliverable is the second version of the software

implementation for the data aggregation and storage
module. This deliverable is the result of Task3.3.

Keyword List: Storage, Aggregation, Fusion, Catalogue, Software

Licensing information: This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information
contained therein

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 88

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v1.0 04/09/2021 First version of D3.8 TECNALIA

V1.1 21/06/2022 Update of components, APIs and
chapter describing changes in v2

TECNALIA

V1.2 29/07/2022 Content revision. Extension of data
aggregation and fusion sections

TECNALIA

V1.3 12/09/2022 Description of new data models
(noise, census, etc.-) and update of
the installation instructions

TECNALIA

V1.4 16/09/2022 Version ready for internal review TECNALIA

V1.5 27/09/2022 Internal review FRAUNHOFER

V1.6 30/09/2022 Final version ready for submission TECNALIA

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 88

Table of Contents

Table of Contents .. 4

List of Figures .. 6

List of Tables .. 6

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

1.3 Updates with respect to v1 ... 10

2 Implementation ... 12

2.1 Functional description ... 12

2.1.1 Fitting into overall URBANITE Architecture ... 12

2.2 Technical description .. 13

2.2.1 Data Aggregation ... 13

2.2.1.1 Traffic Flow Data Aggregation ... 14

2.2.1.2 Bike Data Aggregation ... 15

2.2.1.3 Design & Implementation ... 17

2.2.2 Data Fusion .. 19

2.2.3 Data Storage & Retrieval ... 20

2.2.3.1 Challenges and architectural design ... 21

2.2.3.2 Storage Layer ... 22

2.2.3.3 Access Layer .. 26

2.2.3.4 Technical specifications ... 27

2.2.4 Data Catalogue .. 27

3 Data Storage & Retrieval & Aggregation -delivery and usage .. 29

3.1 Installation instructions ... 29

3.2 User Manual .. 31

3.3 Licensing information .. 31

3.4 Download .. 31

4 Data Catalogue -delivery and usage .. 31

4.1 Installation instructions ... 31

4.2 User Manual .. 31

4.3 Licensing information .. 35

4.4 Download .. 35

5 Conclusions ... 36

6 References ... 37

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 88

7 APPENDIX: Data models .. 38

7.1 Traffic Flow Observed ... 38

7.2 Air QualityObserved .. 38

7.3 WeatherObserved ... 39

7.4 Calendar and Day Specification ... 39

7.4.1 DaySpecification .. 40

7.4.2 Calendar .. 40

7.5 Event .. 41

7.6 Transport Station... 42

7.7 Point of Interest .. 43

7.8 GtfsShape .. 43

7.9 Tourist Trip .. 44

7.10 Origin Destination Matrix .. 45

7.11 Population and household models ... 46

7.11.1 CensusObserved .. 46

7.11.2 PopulationObserved .. 47

7.12 ElectroMagneticObserved ... 51

7.13 NoiseLevelObserved .. 51

7.14 MapLayer ... 52

7.15 Metadata ... 53

8 APPENDIX: Storage & Retrieval API ... 55

8.1 Storage .. 55

8.1.1 insertTData (POST) .. 55

8.1.2 updateTData (PUT) .. 57

8.1.3 deleteTDate (DELETE) .. 60

8.2 Retrieval .. 61

8.2.1 getTData (GET) .. 61

8.2.2 getTData (single record) (GET) .. 64

8.2.3 getTDataRange (GET) .. 66

8.2.4 getSupportedDataModels (GET) ... 69

8.2.5 getDistinct (GET) .. 71

8.3 Metadata ... 74

8.3.1 dataset (PUT) ... 74

8.3.2 dataset (DELETE) ... 77

8.3.3 getDataset (GET) ... 78

8.3.4 getCatalogueDatasets (GET) .. 80

8.3.5 searchDatasets (GET) .. 82

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 88

9 APPENDIX: Data Aggregation API .. 84

9.1 Types of Aggregators ... 84

9.2 aggregate (GET) ... 85

List of Figures

FIGURE 1 - URBANITE ARCHITECTURE ... 13
FIGURE 2 - TIME SERIES STRUCTURE FOR TRAFFIC DATA AT A GIVEN ROAD LOCATION CORRESPONDING TO A

SENSOR LOCATION .. 14
FIGURE 3 - INFORMATION RELATED TO THE START AND END POINTS OF THE BIKE TRAJECTORIES 15
FIGURE 4 - VISUALIZATION OF ONE OF THE DIRECT TESSELLATIONS PROVIDED IN URBANITE FOR THE DISTRICTS

OF THE CITY OF BILBAO. THE NUMBER SHOWN FOR EACH DIVISION CORRESPONDS TO THE VALUE OF THE

ZONE_ID... 16
FIGURE 5 - VISUALIZATION OF VORONOI AREAS TESSELLATION OBTAINED BY URBANITE. THE INPUTS FOR THE

GENERATION ARE THE LIMITING RECTANGLE AND THE SET OF RED POINTS MARKED IN THE MAP. 17
FIGURE 6 - OPENTSDB ARCHITECTURE. ... 18
FIGURE 7 - DATAPOINTS WITHOUT DOWNSAMPLING ... 18
FIGURE 8 - DATAPOINTS WITH DOWNSAMPLING ... 19
FIGURE 9 - DASHBOARD VISUALIZATION IN GRAFANA .. 19
FIGURE 10 – GET METHOD IN THE DATA AGGREGATION API. ... 19
FIGURE 11 - DATA STORAGE & RETRIEVAL REPOSITORIES ... 20
FIGURE 12 - TECHNOLOGY STACK ... 22
FIGURE 13 – METHODS IN THE DATA STORAGE API TO INSERT, DELETE AND UPDATE DATA 26
FIGURE 14 - METHODS IN THE DATA RETRIEVAL API TO RETRIEVE DATA ... 27
FIGURE 15 - METHODS IN THE DATA STORAGE API TO MANAGE METADATA ... 27
FIGURE 16 - SCHEMA ABOUT URBANITE COMPONENTS (UI, DATA CATALOGUE AND CONNECTORS, DS&R) . 28
FIGURE 17 - DATA CATALOGUE MANAGEMENT OF FEDERATED ODMS ... 32
FIGURE 18 - DATA CATALOGUE CONFIGURATION MANAGEMENT ... 32
FIGURE 19 - DATA CATALOGUE FEDERATED METADATA SEARCH BY TAG .. 32
FIGURE 20 - DATA CATALOGUE FEDERATED METADATA SEARCH .. 33
FIGURE 21 - INFORMATION FIELDS OF DATASET’ METADATA SEARCH LIST .. 33
FIGURE 22 - DATA CATALOGUE FEDERATED METADATA DATASET DETAIL VIEW ... 34
FIGURE 23 - DATA CATALOGUE- DISTRIBUTION - INFORMATION ICON .. 34
FIGURE 24 - DATA CATALOGUE -DETAILS OF A DISTRIBUTION .. 34

List of Tables

TABLE 1: STATUS OF DATA FUSION, STORAGE AND RETRIEVAL/CATALOGUE REQUIREMENTS FROM D5.1 12
TABLE 2: STRUCTURE FOR DAY SPECIFICATION .. 40
TABLE 3: STRUCTURE FOR A CALENDAR SPECIFICATION ... 40
TABLE 4: API FOR DATA INSERTION ... 55
TABLE 5: API FOR DATA UPDATE .. 57

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 88

TABLE 6: API TO DELETE DATA ... 60
TABLE 7: API FOR DATA RETRIEVAL ... 61
TABLE 8: API FOR DATA RETRIEVAL (SPECIFIC RECORD) ... 64
TABLE 9: API FOR DATA RETRIEVAL (TIME RANGE) ... 66
TABLE 10: API FOR THE RETRIEVAL OF THE DATA MODELS INFORMATION .. 69
TABLE 11: API FOR THE RETRIEVAL OF DISTINCT VALUES. .. 71
TABLE 12: API FOR THE INSERT AND UPDATE OF METADATA ... 74
TABLE 13: API FOR THE DELETION OF METADATA .. 77
TABLE 14: API FOR THE RETRIEVAL OF DATASET METADATA .. 80
TABLE 15: API FOR THE SEARCH AND RETRIEVAL OF DATASET METADATA .. 82
TABLE 16: TYPES OF AVAILABLE AGGREGATORS ... 84

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 88

Terms and abbreviations

ACID Atomic, Consistent Isolated, Durable

API Application Programming Interfaces

BI Business Intelligence

CKAN Comprehensive Knowledge Archive Network

CSV Comma Separated Values

DCAT Data CATalog Vocabulary

DCAT-AP Data CATalog Vocabulary - Application Profile

DKAN Drupal-based Knowledge Archive Network

EC European Commission

GNU GNU's Not Unix

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

JAR Java ARchive

JDBC Java Database Connectivity

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

JVM Java Virtual Machine

NGSI-LD Next Generation Service Interfaces- Linked Data

NO Nitric Oxide

NoSQL Not Only SQL

NO2 Nitrogen Dioxide

NOX Nitrogen Oxides

OD Origin Destination

ODMS Open Data Management Systems

PM10 Particulate Matter

RDBMS Relational DataBase Management System

REST Representational State Transfer

SO2 Sulfur Dioxide

SQL Structured Query Language

SSL Secure Socket Layer

TSD Time Series Daemon

TSDB Time Serioes Data Base

URL Uniform Resource Locator

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 88

Executive Summary

This deliverable contains an overview of the software components that are related to the tasks

of data aggregation, fusion, storage, retrieval and its catalogue. This refers to the process of

mapping, aggregation, fusion, storage and retrieval of the curated data. A common model

(based on Fiware’s data model) for storage of the information and knowledge extraction has

been defined, handling the semantic processing of the curated data as well as the aggregation

and deduplication of the data that originate from distinct sources. Finally, the storage strategy

and implementation of a set of APIs for retrieval were developed. For each existing module

described in this deliverable, an overview along with a description is given. Where applicable,

details on configuration, installation and usage are provided. The components are

implemented following a microservice approach, so they fit well with the global docker-based

architecture.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 88

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities, that are data harvesting, data curation, and
data aggregation and storage. The three deliverables D3.3, D3.6, and D3.8, focus on these core
features respectively. Due to the interaction between these modules, the aforementioned
deliverables should be understood as a collection of documents related to the same
overarching concept that is the Data Management Platform. These three deliverables describe
the final version of these components.

1.1 About this deliverable

Within the Data Management Platform, this deliverable focuses on the components related to
data fusion and aggregation, data storage and retrieval and data catalogue. It presents fusion
and aggregation techniques of interest for urban mobility, the challenges involved in storing
and retrieving big volumes of data as well as managing heterogeneous formats, and a solution
for managing datasets and related metadata. A dataset is a combination of data and metadata.

1.2 Document structure

Section 2.1 covers the functionalities provided by the four components related to data fusion
and aggregation, data storage and retrieval and data catalogue, and their fitting to the general
architecture defined in WP5. Section 2.2 describes the technical details of the different
components in the Data Management Platform. Then, for each of the main modules,
dedicated sections 3 and 4, present their installation instructions, a brief user manual, licensing
information and the repository URL for downloading the source code. The document wraps up
with a conclusion and references.

1.3 Updates with respect to v1

The main updates with respect to v1 of this document consist of the extension of the Data
Storage component to support additional data models, improvements in the Data Retrieval
Component API and the implementation of the Data Aggregation API.

• Extension of the Data Storage component: The following new models are now
supported in order to meet the requirements of WP4: Event, GtfsShape, TouristTrip,
PointOfInterest, TransportStation, CensusObserved, PopulationObserved,
ElectroMagneticObserved, NoiseLevelObserved and OriginDestination Matrix. A new
model named MapLayer has been included to fulfil the requirements of WP5. The
detailed description of these models has been included in 7 APPENDIX: Data models.

• Implementation of the Data Aggregation API: In order to improve performance and
reduce time response in the retrieval of big volumes of data, e.g. for traffic models,
new time series storage has been implemented in OpenTSDB. The data aggregation
API allows the retrieval of data aggregated by customized time periods, as well as
operations on the data, such as the calculation of minimum and maximum values, etc.

• The Data Fusion section has been extended to include concrete examples of how data
is fused in URBANITE and for which purposes.

• The Data Retrieval API has been extended to support the new data models and to
provide some additional methods adapted to the needs of WP4, WP5 and WP6.

• In order to guarantee that only authorized users can store and retrieve data, the Data
Storage component will be deployed without external access. This means that only
components in the same network will have access to the endpoints. Regarding data

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 88

retrieval, a new API has been implemented, i.e. OpenDataRetrieval, that provides
access only to the datasets that are offered openly. This way, access to proprietary
data through the Data Retrieval component will be restricted and users will only have
access through the OpenDataRetrieval to public data, aggregated data or to analysis
and simulation results based on the data, but not to the raw data.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 88

2 Implementation

2.1 Functional description

As mentioned in the introduction, this deliverable focuses on the 4 components related to
data fusion and aggregation, data storage and retrieval and data catalogue.

The functional requirements for these components were listed in deliverable D5.1 and a
detailed design was provided in deliverable D5.4. We present here a short summary and the
status of development. All the requirements are fulfilled.

Table 1: Status of Data fusion, storage and retrieval/catalogue requirements from D5.1

Component Requirements in D5.1 + current status

Data
fusion/aggregation

• DF.01. Aggregation. The component should allow to
aggregate curated data coming from different data sources
if needed. (fulfilled)

• DF02. Deduplication. The component should allow the
deduplication of the data (fulfilled).

• DF03. Data mapping. The data should be mapped into EU
vocabularies (fulfilled).

• DF.04. MetaData mapping. The metadata should be mapped
into DCAT-AP metadata (fulfilled).

Data Storage • DS.01. Big data storage. The harvested data should be
persisted to a big data capable storage solution (fulfilled).

• DS02. DCAT-AP compliance. The data storage component
should be able to process and store DCAT-AP compliant
metadata (fulfilled).

Data Retrieval /
Data Catalogue

• DR.01. Data Retrieval. The data retrieval component must
expose API to retrieve and query the data stored in the
different repositories (fulfilled).

• DR.02. Data Hub. The metadata stored in the repositories
should be accessible through a data hub in a uniform way
taking advantage of DCAT-AP standard and related profile
(fulfilled).

2.1.1 Fitting into overall URBANITE Architecture

The four components described in this deliverable have been implemented following a
microservice approach, so they fit well with the docker-based architecture designed in WP5.
Besides, the Data Catalogue offers a user interface to manage and search through the
datasets.

The components described in this deliverable are high-lighted in green in the architecture
diagram from deliverable D5.4 below:

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 88

Figure 1 - URBANITE architecture

2.2 Technical description

This section describes the technical details of the different components in the Data

Management Platform dedicated to data fusion & aggregation, data storage & retrieval and

data cataloguing.

Data fusion and aggregation functionalities have been integrated into the different functional

modules related to the analysis of traffic and mobility by bicycles.

2.2.1 Data Aggregation

Data aggregation is the process of gathering data and presenting it in a summarized format.

Data aggregation is useful e.g. to remove personal information or to provide information in a

synthetic form or to train the models in WP4.

In the case of Traffic Data, the following aggregated functions are calculated before

performing the training of the Artificial Intelligence models in WP4:

• Initial date and time of the data, typically the Unix timestamp.

• End date and time of data, typically the Unix timestamp.

• Temporal aggregation period, typically 5 or 15 minutes.

• Maximum value of the traffic flow.

• Minimum value of the traffic flow.

• Number of holes within the data.

• Average period of each hole.

• Standard Deviation

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 88

Next, we provide a more detailed description of traffic flow data aggregation and bike data
aggregation computed in URBANITE.

2.2.1.1 Traffic Flow Data Aggregation

Traffic flow data measured by sensors can be provided in different ways. One common way (as
provided by the Bilbao use case) is to provide an aggregated time series structure describing
the number of vehicles that have gone through a particular road at a given sensor location.

Figure 2 - Time series structure for traffic data at a given road location corresponding to a sensor
location

The structure can be seen in Figure 2. Each line in the time series has two values being the first
one, the timestamp (in seconds) in Epoch format and the second one, the number of vehicles
that have gone through that specific location for the last 5 minutes.

This period, 5 minutes or 300 seconds, is the temporal aggregation rate used for this time
series. The period can vary from time series to time series and depending on the application. In
the case of URBANITE, temporal aggregation rates of 5 and 15 minutes are considered. The 15
minutes aggregation is computed from the values obtained in the 5 minutes aggregation. The
computation of time series with a longer temporal aggregation period implies the loss of
information. For this reason, data is usually stored with the finer resolution available.

As it is mentioned above, the resolution to be used depends on the specific application but
also on the actual data measured. It could be thought that the best would be to always use the
finer resolution, but, in practice, using the finer resolution could imply working with a time
series with a lot of noise, whereas increasing the temporal aggregation period averages the
noise producing a smoother time series. Hence, these two aspects must be balanced, on one
hand the time series should have the most possible information, and on the other, with the
least possible noise. The periods chosen in URBANITE, 5 and 15 minutes, correspond to values
in which the noise and the amount of information are compensated, producing time series
that are appropriated to train AI model for prediction.

Another important aspect to mention is that, although we use a 5-minute aggregation rate,
that does not imply that we can count on the fact that the sensors will always provide data
every 5 minutes. For example, in Figure 2 there is no data available for timestamp
1631523900. This usually occurs when working with real data because there are always
situations where the sensor has gone offline due to issues related to the data capturing
process, power outages, connectivity problems or other obstacles that do not allow to obtain
the correct data.

However, the traffic data is not always provided by the city in an aggregated time series
format. For example, in the Helsinki use case, a timestamp is stored every time a vehicle goes
through the sensor location. This implies that in order to transform this information into an
aggregated time series format, some calculations must be performed. The aggregation
component of the Data Management platform is in charge of performing these calculations

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 88

periodically. Given an aggregation period and a starting time stamp, a division of the timeline
can be performed and the trips that lie in each slot can be added to produce the aggregated
time series format.

In certain cases, other aggregations need to be performed, for example, some traffic sensors
divide the information depending on the type of vehicle (motorcycle, regular car or long
vehicle, i.e., a bus or a truck). In the traffic flow prediction procedure performed in URBANITE,
the traffic flow is not distinguished according to the vehicle type. Therefore, vehicle type
aggregation needs to be done. Other sorts of aggregations include the aggregation of vehicles
measured in different lanes of the road.

2.2.1.2 Bike Data Aggregation

The harvested data related to bikes is the GPS data of the individual bike rentals, in the case of
Bilbao and Helsinki use cases, rented using the city’s public service. These data are used in
URBANITE for the computation of Origin-Destination (OD) matrixes and for the analysis of
trajectories. For the first case, some aggregations need to be computed by the Data
Management Platform. For the second case, data cleaning processes need to be carried out
(see D3.5 for more detailed information about Cleaning Trajectory Data).

In the case of the computation of the OD matrixes, a reduced set of data is used and only the
initial and end points of each rental are considered (see Figure 3). The data in each row
represents a rental where the three first values correspond to the starting point of the
trajectory (timestamp in seconds in Epoch format when the rental started, and GPS latitude
and longitude coordinates), and the last three values correspond to the end of the trajectory
(timestamp and GPS coordinates).

Figure 3 - Information related to the start and end points of the bike trajectories

There are two different aggregation processes to be performed in the computation of the OD
matrixes: temporal and spatial aggregation. The temporal aggregation corresponds to the
same type of aggregation performed in the case of traffic flow data, i.e. trips are summed up
for a given time period. Typically, the aggregation periods for the computation of the OD
matrixes are longer than for the prediction of traffic data, being a typical value equal to 1 hour.
The reason for choosing such a large value, in comparison to the traffic flow case, is due to the
fact that the number of trips is notably lower, and a longer period is needed in order to obtain
enough statistics to reduce the noise.

The spatial aggregation implies adding together all the trips within the area of interest. For this
purpose, a tessellation of the map of the area of interest, i.e. a division of the map that fills all
the zone of interest, needs to be provided.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 88

In the case of the OD matrix computation, two different mechanisms are provided within the
URBANITE project: a direct method by means of a geojson object, and by defining a set of
points to produce a Voronoi tessellation1.

The direct method needs a geojson2 that represents a “FeatureCollection” object
which contains a set of features where the geometry should be of type Polygon. Each of
these features should have a property of namezone_id that will be later used to identify
each of the areas.

Figure 4 - Visualization of one of the direct tessellations provided in URBANITE for the districts of the city
of Bilbao. The number shown for each division corresponds to the value of the zone_id.

Alternatively, in order to generate the Voronoi areas, two inputs need to be provided: a set of
points and a rectangle containing all the previous points and that set a limit to all the Voronoi
generated areas. These and the resulting areas generated by the tool are shown in Figure 5.

1 https://mathworld.wolfram.com/VoronoiDiagram.html
2 https://geojson.org/

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 88

Figure 5 - Visualization of Voronoi areas tessellation obtained by URBANITE. The inputs for the
generation are the limiting rectangle and the set of red points marked in the map.

The resulting Voronoi areas that can be used in the process of the spatial aggregation in the
computation of the OD matrix are defined as the set of points that are closer to the given input
points. This definition implies that the Voronoi areas are polygons. A possible set of points to
define the spatial aggregation area typically is the set of locations where the bicycles can be
rented, i.e., the bike stations.

2.2.1.3 Design & Implementation

To optimize queries for large volumes of data, we have opted for the OpenTSDB framework
oriented for time series. It is based on a big data database called HBase. The OpenTSDB layer
mounted on top of it provides fast access for large queries.

OpenTSDB consists of a Time Series Daemon (TSD). To interact with it, it is necessary to run
one or more TSDs. Each TSD uses the open-source database HBase. The data schema is highly
optimized for fast aggregations of similar time series to minimize storage space. The
communication with the TSD can be via telnet-style protocol or HTTP API. Figure 6 shows the
OpenTSDB architecture.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 88

Figure 6 - OpenTSDB architecture.

A powerful feature of OpenTSDB is the ability to perform on-the-fly aggregations of multiple
time series into a single set of data points. Aggregation functions are means of merging two or
more data points for a single timestamp into a single value. For more information about
aggregators, refer to the section aggregators in the appendix “Data aggregation API”.

Besides, OpenTSDB can ingest a large amount of data. Hence, queries may return a large
number of data points and eat up bandwidth (see Figure 7). Downsampling can be used to
reduce the number of data points and therefore, decrease the bandwidth.

Figure 7 - Datapoints without downsampling

In the image above, we can see a large number of data points. Using downsampling, we can
reduce the number of data points with an aggregation function, as we can see in the image
below. Downsampling always requires an aggregation function and a time interval.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 88

Figure 8 - Datapoints with downsampling

Another feature of OpenTSDB is fast integration with Grafana, which is a tool for real-time
metrics visualization through a data source connector.

Figure 9 - Dashboard Visualization in Grafana

To access the data, we have exposed a REST API called “Data Aggregation API”. It contains a
‘get’ resource to obtain the data through the OpenTSDB connection.

Figure 10 – Get method in the Data Aggregation API.

The complete specification is described in 9 APPENDIX: Data Aggregation API.

2.2.2 Data Fusion

According to [1] “data fusion techniques combine data from multiple sensors and related
information from associated databases to achieve improved accuracy and more specific
inferences than could be achieved by the use of a single sensor alone.”

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 88

The integration of data and knowledge from the same or several different sources is called
data fusion. The terms information fusion and data fusion are commonly used as synonyms,
but there is a little difference. The term data fusion refers to the integration of raw data, i.e.
directly obtained from sensors, whereas the term information fusion is used to refer to the
integration of already processed data [2]. In the case of URBANITE, the data management
platform deals mostly with information fusion.

The purpose of using data/information fusion is to improve data quality, i.e. to reduce error
probability and to have higher reliability of the data being used in the algorithms for analytics
and decision-making.

There are different data fusion techniques and the approach to use depends on the intended
usage. E.g. images from different types of cameras can be fused to obtain more information, or
data from complementary data sources can be fused to create improved datasets.

In URBANITE, information fusion is done on aggregated data. Several of the analytic modules
developed within URBANITE project require the different data to be fused to be appropriately
consumed by the algorithms. Specifically, the regression methods that are being used by the
Data Analysis modules expect the times at which the different values are measured to be
aligned. Not only aligned but also the aggregation period needs to be the same for all the
fused quantities for the whole process to make sense. Next, we describe some examples of
datasets that are fused in URBANITE and for which purpose:

• Traffic Prediction: In this case, the four datasets that are fused are traffic counts,
weather measurements (temperature and precipitation), festivities information (from
calendar dataset) and events (football games and ferry arrivals). The resulting fused
data stream has an aggregation period of 15 minutes.

• Bike OD Matrix: Here, the data that is fused is the same as in the previous case but
instead of traffic counts , bike rental information is used. The final data stream has an
aggregation period of 1 hour.

• Bus OD Matrix: To calculate these OD matrices, Data Fusion of the ticketing
information dataset and the routing information is carried out. In this case, the final
algorithm is the trip chaining algorithm instead of regression methods.

2.2.3 Data Storage & Retrieval

The Data Storage & Retrieval component provides the means to store and retrieve datasets,
DCAT-AP compliant metadata, and related data. Hence, this component needs to have
repositories to store both DCAT-AP compliant metadata and transformed data, as depicted in
Figure 11.

Figure 11 - Data Storage & Retrieval repositories

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 88

2.2.3.1 Challenges and architectural design

When deciding about the technologies to use to implement the Data Storage & Retrieval
component, several factors were taken into account. One of the main factors to consider was
related to the volume of data to be managed, as the number of records to be ingested can be
very high in some cases due to the update frequencies (for example, traffic flows can reach
around 800.000 monthly registrations). Another important factor was related to the diversity
of available data. Although a specific data model is common to several use cases, they may not
all have the same information available, making the records, within the same common model,
quite heterogeneous. For these cases, the JSON-LD format is quite suitable.

Therefore, it was necessary to design a storage system which could be capable of handling
large volumes of data while offering considerable flexibility in terms of the structure of the
data, characteristics that fit very well with the NoSQL MongoDB database.

On the other hand, it was also taken into consideration that there may be other types of data
sources with information that does not present a high update or a large volume of records, for
which solutions such as the MySQL database can be used.

Even so, although these two databases (MongoDB and MySQL) were chosen for the first
version, the system is flexible and remains open to adding other databases that may be more
appropriate to the needs that may arise in the future or to changing the current ones. As the
volume of data increased, especially for traffic flow related data, there was the need to
optimize the performance of the queries to retrieve big volumes of data and reduce the
response time, so the big data time series database called OpenTSDB was included. This fact
demonstrated that the design is open to adding new databases.

However, the existence of several databases is transparent for the end user or for the
consumer of data, as the main access point to the storage and retrieval system is through a
REST API. This API provides a set of services that are in charge of accessing the most
appropriate database, depending on the type of data it is managing, in a totally transparent
way to the modules that interact with it.

Besides, the Retrieval API was extended with an OpenDataRetrieval API. The functionality is
very similar. In the case of the Retrieval API, it provides access to all data sets in the databases,
but it can only be accessed from the internal network where the Data Platform is deployed. On
the other hand, the OpenDataRetrieval API provides access only to public or open data and can
be accessed from any network. This way, we can guarantee that only authorized users have
access to proprietary or sensitive data.

A high-level architecture of this component is shown in Figure 12:

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 22 of 88

Figure 12 - Technology stack

2.2.3.2 Storage Layer

As mentioned before, the chosen Data Storage system is a combination of SQL (MySQL),
NoSQL (MongoDB) and time series (OpenTSDB) databases, to cover all the needs that may
arise from the analysis and prediction processes developed in WP4. The data is stored in
MongoDB according to the models described in 7 APPENDIX: Data models and formatted in
JSON-LD format as key-values.

MongoDB3is an open source, document-oriented NoSQL database, which means that it stores
data in the form of JSON-like documents, thus, it supports arrays and nested objects as values.
Being based on documents and Schema Less, the documents within a collection (table) may
not have the same fields, thus avoiding having fields with empty or null values that make the
size of the database grow unnecessarily.

In addition, MongoDB does not require large computing resources, and it can be used in a
decentralized environment in a distributed way. This allows scalability not only vertically (CPU
and RAM) but also horizontally (creating more nodes).

On the other hand, MySQL4 is one of the world's most popular relational database (RDBMS),
and it is based on a client-server model. Among its main characteristics, we can find:

• Low cost in hardware and software requirements for its execution.

• Offers high speed and good performance.

• Capable of handling a large volume of data.

• Ease of installation and configuration, supported in almost 100% of current operating
systems.

• High stability and low probability of data corruption.

• Supports security through SSL (Secure Socket Layer) and data encryption.

• Possibility of using different storage mechanisms that offer different operating speeds,
physical support, capacity, geographical distribution, transactions ...

• Use of ACID transactions (Atomic, Consistent Isolated, Durable), through commit,
rollback, crash recovery and record blocking, and Distributed Transactions.

• Supports replication.

3 http://www.mongodb.com/
4 https://www.mysql.com/

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 23 of 88

• Supports ANSI SQL5

• Ease of data import and export processes.

Finally, all harvested data are stored in MongoDB and timeseries data are also stored in
OpenTSDB. Next, we explain how the collections have been organized in MongoDB for each of
the data models depending on their volume.

• Traffic Flow Observed: the number of records (traffic status measurements) can be
too high to store all of them in a single collection. For example, in Bilbao Use Case we
can find approximately 800,000 records per month, which would make almost 10
million records per year.

Due to performance issues, and although the logic of storing and retrieving the data is
somewhat complicated, the data is divided into one collection for each month and
year, so handling a volume of about 800.000 records per collection (Bilbao use case) is
fast and efficient.

The names of the collections follow the pattern
trafficflowobserved_<city>_<year>_<month>. For example:

trafficflowobserved_bilbao_2021_08
 trafficflowobserved_helsinki_2021_06
 …

To speed up data queries, collections also have an index on the dateObserved field, in
descending order, in addition to the index that MongoDB generates on the unique
record identifier.

• Air Quality Observed: For this data model, the number of records per use case is
estimated to be around 50.000 per month, so a volume of close to 600.000 records per
year allows us to have a single collection per year and use case.

The names of the collections follow the pattern airqualityobserved_<city> _<year>.
E.g.:

airqualityobserved_bilbao_2021
airqualityobserved_messina_2020
airqualityobserved_amsterdam_2022
…

To speed up data queries, collections also have an index on the dateObserved field, in
descending order, in addition to the index that MongoDB generates on the unique
record identifier.

• Day Specification: In this case, there should be one record for each day of a year, so
the total number of records is small enough to be able to have all the data in a single
collection per use case, without compromising performance.

The collections are named dayspecification_<city>:

dayspecification_amsterdam

5 https://docs.oracle.com/database/121/SQLRF/ap_standard_sql001.htm

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 24 of 88

dayspecification_bilbao

dayspecification_helsinki

dayspecification_messina

• Calendar: For this data model, there should be one record for each year, so all the data
will be stored in just one collection per use case. The collections are named
calendar_<city>:

calendar_amsterdam

calendar_bilbao

calendar_helsinki

calendar_messina

• Event: To store relevant events in the city that can have an important impact on traffic
prediction. E.g. in Bilbao, the model is used to store the calendar of football matches.
In Helsinki, the model is used to store information about ferry arrivals and departures.
In general, there should be few records per year but for clarity and to facilitate queries
we have decided to have a dataset per year. The event model is used and the
collections’ ids follow the pattern: event_<city>_<year>. E.g.:

event_bilbao_2014

event_helsinki_2022

• GtfsShape: Model to store geographic areas. Normally, this dataset should have a low
number of records, so we store the data in a single dataset. In the case of Bilbao, 8
records are stored for the districts and 21 for the Wi-Fi zones. In the case of
Amsterdam, there are 14 regions in the North Neighborhood. In Messina, there are 6
districts. The collection id follows the pattern: gtfsshape_<city>. E.g.:

gtfsshape_bilbao

gtfsshape_amsterdam

gtfsshape_messina

• TouristTrip: Model to store itineraries given a set of waypoints. For this data model,
the number of records per use case is estimated to be around 50.000 per month, so a
volume close to 600.000 records per year.

The names of the collections follow the pattern touristtrip_<city>
<item><year>_<month>. E.g.:

touristtrip_bilbao_bikes_2018_10

touristtrip_bilbao_bikes_2021_02

touristtrip_helsinki_bikes_2017_05

• TransportStations: Model to store the Public Transport Stations. Normally, this dataset
should have a low number of records, so we store the data in a single dataset. In the
case of Bilbao 40 records are saved for Bilbao’s public bike stations. In the case of
Helsinki we have 457 records of bike stations. In the case of Messina there are 998

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 25 of 88

records for tram and bus stations. In the case of Amsterdam, there are 244 records for
tram and metro stations. The collection’s id follows the pattern:
transportstation_<city>. E.g.:

transportstation_bilbao

transportstation_helsinki

transportstation_messina

transportstation_amsterdam

• PointOfInterest: Model to store the points of interest. Normally, this dataset should
have at most a few thousands of records, so we store the data in a single dataset. In
the case of Bilbao, 40 records are saved for Bilbao’s public bike stations. In the case of
Messina, 1153 records of different categories are available. In the case of Amsterdam,
we have 1430 records for sport locations and schools (primary and secondary
education). The collection’s id follows the pattern: pointofinterest_<city>. E.g.:

pointofinterest_bilbao

pointofinterest_messina

pointofinterest_amsterdam

• OriginDestinationMatrix: Model to store an Origin Destination Matrix. Normally this
dataset should have at most a hundred of records. These matrices are calculated with
the modules developed in WP4. The collection’s id follows the pattern:
origendestinationmatrix_<city>. E.g.:

origendestinationmatrix _bilbao

• CensusObserved: Model to store household related information from Eurostat data on
European Union Statistics on Income and Living Conditions (EU-SILC). The collection’s
id follows the pattern: censusobserved_<city>. E.g.:

censusobserved _bilbao

• PopulationObserved: Model to store population statistics by age, gender, districts,
income and employment. The collection’s id follows the pattern:
populationobserved_<city>. E.g.:

populationobserved_messina

• ElectroMagneticObserved: The data model is intended to measure excessive electric
and magnetic fields (EMFs), or radiation in a work or public environment according to
the level of exposure to electromagnetic fields on the air. The frequency of the
hertzian waves is conventionally lower than 300 GHz, propagating in space without
artificial guide. Messina has historical data from 2019.

electromagneticobserved_messina_2019

• NoiseLevelObserved: model to store an observation of those acoustic parameters that
estimate noise pressure levels at a certain place and time. Messina has historical data
from 2018 and 2019:

noiselevelobserved_messina_2018

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 26 of 88

noiselevelobserved_messina_2019

• MapLayer: model to store map layer (GeoJSON files) of the use cases. Scripts that run
on AirFlow store the produced map layer on the Data Storage. A section of the UI
allows retrieving the available map layers and presents them to the user, who can
select the ones to be displayed on the map and access their description.

• Metadata: All metadata information is stored in a single collection named metadata,
since we estimate that the number of records to be handled is not excessively large, so
there is no need to divide them into different collections. Storing them in a single
collection also facilitates operations on the metadata, both the insertion and the
search by tags. To perform these searches by tags in the text fields, a text index6has
been created on the collection.

2.2.3.3 Access Layer

The access layer contains a REST API with predefined methods for inserting or accessing data
and metadata and a JDBC connection, through the Presto software, to the different databases.

2.2.3.3.1 API

The API is the main access point to the datasets and metadata, providing methods to store and
retrieve both of them. It offers a set of REST Web Services, so all the accesses are made
through HTTP/HTTPS requests.

This section provides a list of these methods, divided into storage, retrieval, and metadata
related REST services. The complete description (method, input and output parameters, etc.) is
described in 8 APPENDIX: Storage & Retrieval API7.

Figure 13 – Methods in the Data Storage API to insert, delete and update data

6 https://docs.mongodb.com/manual/core/index-text/
7 https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-
config

DRAFT VERSIO
N

https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-config
https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-config

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 27 of 88

Figure 14 - Methods in the Data Retrieval API to retrieve data

Figure 15 - Methods in the Data Storage API to manage metadata

2.2.3.4 Technical specifications

The Data Storage & Retrieval components have been developed in Java using the Spring
Framework8 and Spring Boot9.

2.2.4 Data Catalogue

The Data Catalogue component provides access to the metadata of the different data sources
and their data using a federated approach. In particular, the Data Catalogue component is
based on Idra10 , which is a platform able to aggregate Open Data Management Systems
(ODMS) based on different technologies providing a unique access point. It harmonizes the
metadata coming from federated data sources following DCAT-AP standard.

8 https://spring.io/
9 https://spring.io/projects/spring-boot
10 https://idra.eng.it

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 28 of 88

More specifically, the Data Catalogue provides functionalities to discover and access the
datasets’ metadata collected and managed by the components of URBANITE Ecosystem for
data acquisition, aggregation and storage, such as the Data Storage & Retrieval component.

The Data Catalogue makes use of a specific connector, developed ad hoc for URBANITE
ecosystem, to interact with the Data Storage & Retrieval. Following the guidelines for the
development of Idra connectors, the new connector implements the operations to allow the
interaction between the Data Catalogue and the Data Storage & Retrieval.

The URBANITE user interface already integrates the Data Catalogue user interface as depicted
in Figure 16. In this schema is underlined also the usage of the Data Storage &Retrieval
connector between the Data Catalogue and the Data Storage & Retrieval components (a part
of other available connector types, e.g. CKAN, DKAN etc.).

Figure 16 - Schema about URBANITE components (UI, Data Catalogue and connectors, DS&R)

A connector is the basic building block used by Idra to interact and harmonize, following DCAT-
AP standard, the metadata of the datasets managed by the federated Open Data Management
System. Within Idra, a specific connector is provided for any of the supported data sources
typologies (indeed, Idra already includes connectors to federate ODMS based on CKAN, DKAN,
Socrata, etc.).

The newly created connector allows to access and manage the datasets provided by the Data
Storage & Retrieval by exploiting its exposed Rest API “/data/getCatalogueDatasets”.

The datasets’ metadata returned by this API are finally added to Idra and made available for all
functionalities provided by the tool for searching (using Idra APIs). More technical details
about the Data Catalogue are reported in the deliverable D5.4.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 29 of 88

3 Data Storage & Retrieval & Aggregation -delivery and usage

3.1 Installation instructions

In order to integrate well into the URBANITE platform, all components are available as
Docker11 images. However, before building the Docker images, the corresponding JAR files
need to be created. A JAR file is an executable that runs on the JVM.

The storage and retrieval and the aggregation components are composed of two Docker
groups:

➢ APIs

The APIs of the three components (storage, retrieval, aggregation) are bundled
together and rely on a build tool called Maven for dependency management and
generation of the JARs. As such, the deployment of a service can be achieved using the
commands below. Note that curly brackets indicate that applicable values need to be
substituted.

$>mvn clean package

$> docker build –t urbanite/dataStorage .

$> docker run –p {PORT}:80 urbanite/dataStorage

For this docker component, a certain configuration is needed to be applied using
environment variables, in this case, the setup parameters to connect to MongoDB and
to OpenTSDB. If any of these environment variables are not present, the default values
will be used:

VARIABLE DESCRIPTION DEFAULT VALUE

MONGO_HOST Host where MongoDB is installed Mongodb

MONGO_PORT Port where MongoDB is listening 27017

MONGO_DBNAME Name of the MongoDB Database to

insert or retrive data

urbanite

OPENTSDB_URL Url where is deployed the database

OpenTSDB

http://opentsdb:4242

These environment variables can be passed to Docker containers, for example:

$>docker run -it -p 80:80 -e MONGO_HOST=172.26.41.138 -e

MONGO_PORT=27018 -e OPENTSDB_URL=http://opentsdb_4242

urbanite/datastorage

➢ Databases

The APIs of the 3 components (storage, retrieval and aggregation) have to connect to
the different databases (MongoDB, MySQL and OpenTSDB). A single Docker-
Compose12 configuration file will be used to create all the images at once.

11 https://www.docker.com/

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 30 of 88

For this docker component, it is also necessary to provide a previous configuration.
Also, a user with access to MySQL database is needed. In the creation of MySQL
Docker image, these variables will be set:

VARIABLE DESCRIPTION

MYSQL_ROOT_PASSWORD The password for ROOT user, to

create this user in MYSQL

configuration

MYSQL_USER A user to be use

MYSQL_PASSWORD The password for MYSQL_USER

Below is the docker-compose file:

brings up the dependencies

version: '2'

services:

mysql:

container_name: urbanite_mysql

 image: mysql:8.0.24

 environment:

MYSQL_ROOT_PASSWORD: '{**********}'

MYSQL_USER: 'presto'

MYSQL_PASSWORD: '{**********}'

 ports:

 - "3306:3306"

 volumes:

 - /opt/mysql_data:/var/lib/mysql

mongodb:

container_name: urbanite_mongodb

 image: mongo:4.0.24

 ports:

 - "27017:27017"

 volumes:

 - /opt/mongo_data:/data/db

opentsdb:

 image: petergrace/opentsdb-docker:latest

 restart: always

 volumes:

 - hbase_data:/data/hbase

 - tsdb_tmp:/tmp

 command:

 - /bin/bash

 - -c

 - (echo "tsd.storage.fix_duplicates = true" >>

/etc/opentsdb/opentsdb.conf.sample) && (echo "tsd.http.query.allow_delete =

true" >> /etc/opentsdb/opentsdb.conf.sample) && (echo "tsd.query.timeout =

80000" >> /etc/opentsdb/opentsdb.conf.sample) && /entrypoint.sh

 This will:

o Create a docker container for MySQL, from an official image, with a user and
running at port 3306.

o Create a docker container for MongoDB, from an official image, and running at
port 27017.

o Create a docker container for OpenTSDB, from an official image, and running
at port 4242.

12 https://docs.docker.com/compose/

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 31 of 88

3.2 User Manual

The only part of the component that a user can interact with is the API, a REST Web Service.
This API is developed following the OpenAPISpecification13 and offers a human-readable
version14.

This page shows the services that are implemented, giving information about the access URLs,
parameters, return codes and values.

Also, a JSON file with the full specification is available15.

3.3 Licensing information

The software is licensed under Affero General Public License (AGPL) version 316.

3.4 Download

All source code resides in the GitLab maintained by Tecnalia17.

4 Data Catalogue -delivery and usage

4.1 Installation instructions

This section covers the steps needed to properly install the Data Catalogue. As described
before, the Data Catalogue is an extension of Idra which is an Open Data Federation Platform
developed as a Java EE (Enterprise Edition) application. This tool can be installed through
Docker18. The installation instructions are detailed in the Installation overview section of the
online manual. The detailed instruction to install or use the administration functionalities of
Idra can also be found at the corresponding section on Read The Docs19.

4.2 User Manual

The Data Catalogue provides a set of Restful APIs to interact with the IDRA tool and its
functionalities. These API are developed following the OpenAPI specification and in particular,
Apiary20. The official APIs are available on this official link21. These APIs are grouped into
Administration APIs, End User APIs and Federation APIs. Further information about Idra APIs is
reported in the deliverable D5.4 and available in the Idra documentation section22.

The Data Catalogue offers the functionalities to discover and access the datasets collected,
managed and produced by the components of URBANITE Ecosystem for data acquisition,
aggregation and storage. The Data Catalogue provides these main functionalities to let to the
administrator user to manage catalogues federation and to manage configuration as depicted
in Figure 17 and in Figure 18.

13 https://swagger.io/specification/
14 http://[server:port]/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-config
15 https://[server:port]/data/v3/api-docs
16 https://www.gnu.org/licenses/agpl-3.0.en.html
17 https://git.code.tecnalia.com/urbanite/public/-/tree/main/data_management_platform
18 Install Idra on Docker - https://idra.readthedocs.io/en/latest/admin/install_docker/
19Idra Installation - https://idra.readthedocs.io/en/latest/admin/installation/
20Apiary - https://apiary.io/
21API description document - https://idraopendata.docs.apiary.io/api-description-document
22Open API Idra - https://idraopendata.docs.apiary.io/#

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 32 of 88

Figure 17 - Data Catalogue management of federated ODMS

Figure 18 - Data Catalogue configuration management

The Data Catalogue also provides the end users the main functionalities to perform federated
metadata search among federated catalogues (Figure 19).

Figure 19 - Data Catalogue federated metadata search by tag

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 33 of 88

The Data Catalogue metadata search can filter the data using a facet approach. In particular,
the following facets are available to filter on dataset metadata results by Tags, Formats,
Licenses, etc., as depicted in Figure 20.

Figure 20 - Data Catalogue federated metadata search

The Data Catalogue metadata search page shows all metadata results, as default visualization,
without any filtering. To perform a search, the user can insert one or more keywords into the
search bar, as depicted in Figure 19.

Moreover, as previously reports, the user can filter the obtained results by selecting a tab,
license, etc., reported in the panels located on the left (Figure 20).

The results are reported in a list of datasets matching with the selected filter and the
submitted keywords; for each result the following information is reported: title, description
and all available distributions.

Figure 21 - Information fields of dataset’ metadata search list

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 34 of 88

By clicking on its title, it is possible to access the detailed information of a dataset, as depicted
in Figure 20. The detailed information includes the tags associated with the dataset, all the
available distributions, the publisher name, the identifier of the dataset, etc.

Figure 22 - Data Catalogue federated metadata dataset detail view

Finally, by clicking on the information icon associated to each distribution, it is possible to
access further details (Figure 24): the associated description, the format, the Access URL (for
direct access to the distribution), the Download URL (to download the distribution), and the
license.

Figure 23 - Data Catalogue- Distribution - Information Icon

Figure 24 - Data Catalogue -details of a distribution

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 35 of 88

4.3 Licensing information

The Data Catalogue is licensed under Affero General Public License (AGPL) version 3. For
further information, read license23 section on official Github of the project.

4.4 Download

Detail about this extension and about this new connector is provided in the Data Catalogue
section of this same document. The source code of the Data Catalogue is available on Github24.

23IDRA License - https://github.com/OPSILab/Idra#license
24Data Catalogue Github - https://git.code.tecnalia.com/urbanite/private/wp3-data-
management/urbanite-data-catalogue-src

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 36 of 88

5 Conclusions

This document describes the technical details of the components associated with the data
fusion, aggregation, storage and retrieval integrated on the URBANITE Data Management
Platform. The last three components are offered through APIs, whereas the Data Fusion
techniques are implemented inside the code of the WP4 algorithms. Data Fusion is referred to
the integration of multiple raw data from the same or several different sources gathered from
sensors is called data fusion. Data Aggregation is the process of gathering data and presenting
it summarized or anonymized. Finally, on a hand, the Data Storage & Retrieval capacities allow
storing and retrieving datasets and associated metadata; on the other hand, the functionalities
provided by the Data Catalogue allow to discover the datasets managed by the Data Storage &
Retrieval and federate additional data sources, offering a unique point to access datasets
coming from scattered sources.

The document provides the updated and final technical description of the components as well
as installation instructions. Thus, these components are part of the data processing chain,
integrating with those defined in deliverables D3.3 and D3.6, associated with data collection
and curation.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 37 of 88

6 References

[1] D. L. Hall y J. Llinas, «An introduction to multisensor data fusion,» Proceedings of the IEEE,
vol. 85, nº 1, p. 6–23, 1997.

[2] F. Castanedo, «A Review of Data Fusion Techniques,» The Scientific World Journal, vol.
2013.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 38 of 88

7 APPENDIX: Data models

Deliverable D3.4 described the common data models to be used in URBANITE. This section
provides more detailed and updated information about those models and how they are being
used by the Data Management Platform components.

Besides, it includes the description of new models that are now supported in v2 in order to
meet the requirements of WP4: Event, GtfsShape, TouristTrip, PointOfInterest,
TransportStation, OriginDestination Matrix, CensusObserved, PopulationObserved,
NoiseLevelObserved and ElectroMagneticObserved .

7.1 Traffic Flow Observed

This model is based on the FIWARE’s TrafficFlowObserved25 data model, and contains
information about an observation of traffic flow conditions at a certain place and time, such as
the number of vehicles detected during the observation, the occupancy of the lanes, the
location of the detection device, etc.

The model is very complete and collects a lot of information, but not all of it is of interest for
WP4 or available in the cities’ data sources. The subset of fields that are harvested are: id,
address, averageVehicleSpeed, dateObserved, intensity, location and occupancy.

Example:

{

 "id": "urn:ngsi-ld:TrafficFlowObserved:59d4ce0d_17afe3d67a6_-2ca4",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 22.0,

 "dateObserved": "2021-08-01T00:25:00.000Z",

 "intensity": 190.0,

 "location": {

 "coordinates": [

 [[505545.02027647,4789451.73590806],

 [505554.84865274, 4789477.77248377]]

],

 "type": "Polygon"

 },

 "occupancy": 0.06,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

7.2 Air QualityObserved

Based on FIWARE’s AirQualityObserved26 data model, it contains information about an
observation of air quality conditions at a certain place and time, such as the carbon monoxide,
nitrogen dioxide, material particles, temperature, humidity, etc.

The subset of fields that are harvested are: id, dateObserved, location, NO, NO2, NOX, PM10
and SO2.

25https://github.com/smart-data-models/dataModel.Transportation/tree/master/TrafficFlowObserved
26 https://github.com/smart-data-models/dataModel.Environment/tree/master/AirQualityObserved

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 39 of 88

Example:

{

 "id": "urn:ngsi-ld:AirQualityObserved:62:290820210500",

 "dateObserved": "2021-08-29T05:00:00Z",

 "location": {

 "coordinates": [43.26750551179745, -2.935188110338201],

 "type": "Point"

 },

 "no": 2,

 "no2": 30,

 "nox": 33,

 "pm10": 13,

 "so2": 10,

 "type": "AirQualityObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

7.3 WeatherObserved

This model is based on FIWARE’s WeatherObserved27 data model, containing information
about an observation of weather conditions at a certain place and time, such as precipitation,
humidity, temperature, UV index, etc.

The subset of fields that are harvested are: id, dateObserved, location, atmosphericPressure,
precipitation, relativeHumidity, temperature, windDirection and windspeed.

Example:

{

 "id": "urn:ngsi-ld:WeatherObserved::Bilbao-2021-06-30T07:00:00.00Z",

 "type": "WeatherObserved",

 "dateObserved": "2021-06-30T07:00:00.00Z",

 "temperature": 13.3,

 "precipitation": 0,

 "atmosphericPressure": 1024,

 "location": {

 "type": "Point",

 "coordinates": [-2.9349377987, 43.2641971992]

 },

 "relativeHumidity": 1,

 "windDirection": 120,

 "windSpeed": 10,

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

7.4 Calendar and Day Specification

These two models have been defined within the scope of the URBANITE project to collect
information on city calendars. The daySpecification model collects information about a specific
day, such as whether it is a holiday, school day, the day of the week, etc. The Calendar model
collects information for a whole year, including a list of references (ID) of each of its days
(daySpecification).

27 https://smart-data-models.github.io/dataModel.Weather/WeatherObserved/doc/spec.md

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 40 of 88

7.4.1 DaySpecification

Table 2: Structure for day specification

Field Description Type Mandatory

id Unique identifier of the entity Text Y

type Entity type Text, must be 'DaySpecification' Y

date The date of this entity Text in ISO8601 format Y

description A description of this item Text N

workingDay If it is a working day (1) or not (0) Numeric (0 or 1) Y

schoolDay If it is a school day (1) or not (0) Numeric (0 or 1) Y

publicHoliday If it is a holiday (1) or not (0) Numeric (0 or 1) Y

weekDay Day of the week Numeric (1 to 7) Y

Example

{

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "type": "DaySpecification",

 "date": "2015-01-01",

 "description": "Año nuevo",

 "workingDay": 0,

 "schoolDay": 0,

 "publicHoliday": 3,

 "weekDay": 4,

 "createdAt": "2021-06-17T07:24:53.376Z",

 "modifiedAt": "2021-06-17T07:24:53.376Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

}

7.4.2 Calendar

Table 3: Structure for a calendar specification

Field Description Type Mandatory

id Unique identifier of the entity Text Y

type Entity type Text, must be 'Calendar' Y

city City of the calendar Text N

location Location of the item Geojson N

year Year of the calendar Numeric Y

days Days that conform the calendar List of Text Y

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 41 of 88

Example (reduced to just 6 days, it could contain a whole year):

{

 "id": "urn:ngsi-ld:Calendar:Bilbao:2021",

 "type": "Calendar",

 "city": "Bilbao",

 "location": {

 "coordinates": [-2.93609619140625,43.26345626603949],

 "type": "Point"

 },

 "year": 2021,

 "days": [

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_01",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_02",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_03",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_04",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_05",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_06",

]

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

}

7.5 Event

This model is based on FIWARE’s Event28 data model and is used to store relevant events in the
city that can have an important impact on traffic prediction. E.g. football matches or ferry
arrivals and departures. The type of event is stored in the category field.

Example:

{

 "_id": "urn:ngsi-ld:event:helsinki:ferry:VuosaariMuugacheck-in:1641582900000",

 "category": "ferry_arrival_departure",

 "startDate": {

 "$date": "2022-01-07T19:15:00.000Z"

 },

 "type": "Event",

 "passengerCount": 300,

 "departsFromHarbour": "Port of Helsinki",

 "arrivesToHarbour": "Muuga",

 "ship": "Finbo Cargo",

 "terminal": "Vuosaari Muuga check-in",

 "routeType": "ferry",

 "subCategory": "DEPARTURE",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/event-

ngsi.jsonld"

],

 "dateCreated": {

 "$date": "2021-12-18T00:00:05.920Z"

 },

 "dateModified": {

 "$date": "2021-12-24T00:00:01.555Z"

 }

},

{

 "_id": "urn:ngsi-ld:event:bilbao:football:1644267600000",

 "category": "football_match",

 "championship": "Primera División 2021/2022",

 "endDate": {

 "$date": "2022-02-07T22:45:00.000Z"

 },

28 https://github.com/smart-data-models/dataModel.TourismDestinations/tree/master/Event

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 42 of 88

 "guestTeam": "Espanyol",

 "homeTeam": "Athletic Bilbao",

 "location": {

 "coordinates": [

 43.264183,

 -2.949421

],

 "type": "Point"

 },

 "startDate": {

 "$date": "2022-02-07T21:00:00.000Z"

 },

 "type": "Event",

 "passengerCount": 0,

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": {

 "$date": "2022-05-23T12:09:52.540Z"

 },

 "dateModified": {

 "$date": "2022-09-12T00:00:04.391Z"

 }

}

7.6 Transport Station

This model is based on FIWARE’s Transport Station29 data model, containing information about
public transport stations, such as name, station type, location and zone identifier.

Example:

{

 "id": "urn:ngsi-ld:TransportStation:Amsterdam:1",

 "location": {

 "coordinates": [

 52.376071,

 4.893344

],

 "type": "Point"

 },

 "name": "Nieuwezijds Kolk",

 "stationType": [

 "tram"

],

 "type": "TransportStation",

 "zoneId": "2 | 12 | 13 | 17",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/urbanite-

context.json",

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2022-09-15T13:32:22.723Z",

 "dateModified": "2022-09-15T13:32:22.723Z"

 },

{

 "id": "urn:ngsi-ld:TransportStation:Bilbao:Bikes:3360",

 "location": {

 "coordinates": [43.2815, -2.96273],

 "type": "Point"

 },

 "name": "LEVANTE",

 "stationType": ["bike"],

29 https://github.com/smart-data-models/dataModel.Transportation/blob/master/TransportStation

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 43 of 88

 "type": "TransportStation",

 "zoneId": "3360",

 "@context": ["https:\/\/smartdatamodels.org\/context.jsonld",

"https:\/\/uri.etsi.org\/ngsi-ld\/v1\/ngsi-ld-core-context.jsonld"],

 "dateCreated": "2022-04-13T07:43:40.515Z",

 "dateModified": "2022-04-13T07:43:40.515Z"

}

7.7 Point of Interest

This model is based on FIWARE’s PointOfInterest30 data model and stores information about
points of interest, i.e., specific point locations that someone may find useful or interesting. For
each POI, we store information such as its name, category, location and zone identifier.

Besides, the field “category” should be one of the terms defined in the taxonomy Categories 31.
For example: bicycles (129), bus stations (426).

Example:

[{

 "id": "urn:ngsi-ld:PointOfInterest:3360",

 "category": "129",

 "location": {

 "coordinates": [43.2815, -2.96273],

 "type": "Point"

 },

 "name": "LEVANTE",

 "type": "PointOfInterest",

 "zoneId": "3360",

 "@context": ["https:\/\/smartdatamodels.org\/context.jsonld",

"https:\/\/uri.etsi.org\/ngsi-ld\/v1\/ngsi-ld-core-context.jsonld"],

 "dateCreated": "2022-04-05T16:16:51.917Z",

 "dateModified": "2022-04-05T16:16:51.917Z"

}]

7.8 GtfsShape

This model is used to store geographic areas. The definition of the model is the one provided
by FIWARE’s GtfsShape32 data model. For each city, different categories of geographic areas
can be stored. E.g. in Bilbao this model is used to store the geographic areas of districts and
Wi-Fi zones. Districts are used for traffic counts whereas Wi-Fi zones are used for OD matrices.

To describe the geographic areas under the same category or group we use the
“alternateName” field.

• "district" for districts

• "wifi_zone" for wifi zones

In Amsterdam, this model is used to store the geographic areas of:

• "amsterdam_nord_neighborhood" for the neighbourhoods in the North.

30https://github.com/smart-data-
models/dataModel.PointOfInterest/blob/master/PointOfInterest/doc/spec.md
31 https://github.com/Factual/places/blob/master/categories/factual_taxonomy.json
32 https://github.com/smart-data-
models/dataModel.UrbanMobility/blob/master/GtfsShape/doc/spec.md

DRAFT VERSIO
N

https://github.com/Factual/places/blob/master/categories/factual_taxonomy.json

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 44 of 88

Besides, the field “name” contains the id of the geographic area.

Example:

[{

 "id": "urn:ngsi-ld:GtfsShape:bilbao:district:1",

 "type": "GtfsShape",

 "alternateName": "district",

 "name": "1",

 "description": "Deusto",

 "@context": ["https://smartdatamodels.org/context.jsonld",

"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"],

 "location": {

 "type": "Polygon",

 "coordinates": [

 [

 [-2.936220985248524, 43.26990470603399],

 ….

 [-2.940830644867825, 43.26943057334333],

 [-2.940626034390812, 43.26950059938804],

 [-2.939857790823712, 43.2696703515841],

 [-2.939316234715834, 43.26974118794736],

 [-2.938821033034044, 43.26979115997708],

 [-2.938637707562993, 43.26980969764579],

 [-2.938005839277664, 43.26985779218709],

 [-2.937536685039381, 43.26987167141488],

 [-2.936220985248524, 43.26990470603399]

]

]

 }

}

]

7.9 Tourist Trip

This model is based on FIWARE’s Tourist Trip 33 data model. A tourist trip represents a created
itinerary of visits to one or more places of interest. In URBANITE, this model is mainly used to
store bike trajectories. E.g., in Bilbao, this model is used to store the 2 waypoints in a bike
rental service where a user picks up the bike and where the same user leaves the bike, as well
as the time spent.

For example, to retrieve all the bike tourist trips done by users in Bilbao for the 28th of
February 2021 we would use the query:

https://bilbao.urbanite.esilab.org/data/getTDataRange/touristTrip/bilbao?startDate=2021-2-
28T00%3A00%3A00.000Z&endDate=2021-2-28T23%3A59%3A00.000Z

The identifiers used in the field named “position” need to match with those defined in Bilbao’s
bikes transport stations34.

Example:

[{

 "id": "urn:ngsi:touristTrip:bikes:112156240",

 "duration": 14,

 "endDate": "2021-02-22T12:55:25Z",

 "itinerary": [{

 "name": "3380",

 "position": 1

 }, {

33 https://github.com/smart-data-models/dataModel.TourismDestinations/tree/master/TouristTrip
34https://bilbao.urbanite.esilab.org/data/getTData/transportStation/bilbao?filters=%7BstationType%3A
bike%7D

DRAFT VERSIO
N

https://bilbao.urbanite.esilab.org/data/getTDataRange/touristTrip/bilbao?startDate=2021-2-28T00%3A00%3A00.000Z&endDate=2021-2-28T23%3A59%3A00.000Z
https://bilbao.urbanite.esilab.org/data/getTDataRange/touristTrip/bilbao?startDate=2021-2-28T00%3A00%3A00.000Z&endDate=2021-2-28T23%3A59%3A00.000Z

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 45 of 88

 "name": "3360",

 "position": 2

 }],

 "owner": ["Bilbao Town Hall"],

 "startDate": "2021-02-22T12:55:25Z",

 "type": "TouristDestination",

 "idTrip": "112156240",

 "customer": "4093730",

 "@context": ["https:\/\/git.code.tecnalia.com\/urbanite\/public\/-

\/raw\/main\/datamodels\/urbanite-context.json",

"https:\/\/smartdatamodels.org\/context.jsonld", "https:\/\/uri.etsi.org\/ngsi-

ld\/v1\/ngsi-ld-core-context.jsonld"],

 "dateCreated": "2022-04-11T09:59:29.700Z",

 "dateModified": "2022-04-11T15:49:53.373Z"

}

]

7.10 Origin Destination Matrix

This model is used to store an Origin Destination Matrix. As FIWARE does not provide a model
for OD matrices, URBANITE has defined one based on NGSI-LD. The definition is available at:

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/ODMatrix-ngsi.jsonld

OD matrices can be calculated for different aggregation periods and for different travel
models. Depending on the travel mode, the geographic areas that represent the origin and the
destination may vary. This is the case of Bilbao, where there are OD matrices based on bike
data and OD matrices (for all travel modes) based on Wi-Fi data. To retrieve each of them, the
field "zones" is used and its content should match the name provided in the "alternateName"
field of the GtfsShape model.

• "district" for bike OD matrices as departure and arrival IDs correspond to districts id of
Bilbao Districts:
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filter
s=%7B%22zones%22%3A%20%22district%22%7D

• “wifi_zone" for OD Matrix based on Wi-Fi data as the IDS correspond to Bilbo wifi
Zones:
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filter
s=%7Bzones%20%3A%20%22wifi_zone%22%7D

• "amsterdam_nord_neighborhood" for OD Matrix based on bikes data as the IDS
correspond to Amsterdam nord neighborhood Zones

Example:

[{

 "id": "urn:ngsi:OriginDestinationMatrix:district_zones:bilbao",

 "aggregationType": "Aggregation period:01:00, Hour from:02:00, Hour

to:03:00, Day type:Saturday, Sunday, Bank holiday",

 "type": "OriginDestinationMatrix",

 "category": "district",

 "endDate": "02-01-2021",

 "matrixData": [{

 "arrivesTo": "1", -> District 1

 "departsFrom": "1", -> District 1

 "volume": 155

 }, {

 "arrivesTo": "2",

 "departsFrom": "1",

 "volume": 858

 }, {

 "arrivesTo": "3",

 "departsFrom": "1",

 "volume": 427

DRAFT VERSIO
N

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/ODMatrix-ngsi.jsonld
https://bilbao.urbanite.esilab.org/data/getTData/gtfsShape/bilbao?filters=%7BalternateName%3Adistrict%7D
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filters=%7B%22zones%22%3A%20%22district%22%7D
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filters=%7B%22zones%22%3A%20%22district%22%7D
https://bilbao.urbanite.esilab.org/data/getTData/gtfsShape/bilbao?filters=%7B%22alternateName%22%3A%20%22wifi_zone%22%7D
https://bilbao.urbanite.esilab.org/data/getTData/gtfsShape/bilbao?filters=%7B%22alternateName%22%3A%20%22wifi_zone%22%7D
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filters=%7Bzones%20%3A%20%22wifi_zone%22%7D
https://bilbao.urbanite.esilab.org/data/getTData/originDestinationMatrix/bilbao?filters=%7Bzones%20%3A%20%22wifi_zone%22%7D
https://amsterdam.urbanite.esilab.org/data/getTData/gtfsShape/amsterdam?filters=%7B%22alternateName%22%3A%20%22amsterdam_nord_neighborhood%22%7D

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 46 of 88

 }, {

 "arrivesTo": "9",

 "departsFrom": "2",

 "volume": 366

 }, {

 "arrivesTo": "1",

 "departsFrom": "3",

 "volume": 308

 }, {

 "arrivesTo": "2",

 "departsFrom": "3",

 "volume": 70

 }, {

 "arrivesTo": "1",

 "departsFrom": "7",

 "volume": 100

 }],

 "startDate": "02-01-2021",

 "travelMode": "Bikes",

 "zones": "Bilbao_districts",

 "@context": ["https:\/\/git.code.tecnalia.com\/urbanite\/public\/-

\/raw\/main\/datamodels\/urbanite-context.json",

"https:\/\/smartdatamodels.org\/context.jsonld", "https:\/\/uri.etsi.org\/ngsi-

ld\/v1\/ngsi-ld-core-context.jsonld"],

 "createdAt": "2022-06-22T09:10:52.172Z",

 "modifiedAt": "2022-06-22T09:10:52.172Z"

}]

7.11 Population and household models

7.11.1 CensusObserved

This model is a new NGSI-LD compliant model defined in URBANITE to store household related
information. Most of the field names are taken from the Eurostat sample data on European
Union Statistics on Income and Living Conditions (EU-SILC)35. However, the labels have been
modified with more readable names (e.g. householdID instead of db030)36.

The context is defined in:

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/census-ngsi.jsonld

Example:

{

 "id": "urn:ngsi-ld:CensusObserved:amsterdam:2016-11-30T07:00:00.00Z",

 "type": "CensusObserved",

 "dateObserved": "2021-11-11T07:00:00.00Z",

 "createdAt": "2021-12-01T13:39:10.00Z",

 "modifiedAt": "2021-12-01T13:39:10.00Z",

 "source": "https://ec.europa.eu/eurostat/",

 "location": {

 "type": "Point",

 "coordinates": [

 -4.754444444,

 41.640833333

]

 },

 "householdID": 1,

35 https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-
conditions
36 https://circabc.europa.eu/sd/a/b862932f-2209-450f-a76d-
9cfe842936b4/DOCSILC065%20operation%202019_V9.pdf

DRAFT VERSIO
N

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/census-ngsi.jsonld

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 47 of 88

 "addressRegion": "Vienna",

 "householdCSWeight": 0.0,

 "personalCSWeight": 0.0,

 "gender": "male",

 "currentEconomicStatus": 1,

 "nationality": "AT",

 "employeeCashIncome": 0.0,

 "selfEmploymentLosses": 0.0,

 "unemploymentBenefits": 0.0,

 "oldAgeBenefits": 0.0,

 "survivorBenefits": 0.0,

 "sicknessBenefits": 0.0,

 "disabilityBenefits": 0.0,

 "educationAllowances": 0.0,

 "hsize": 2,

 "age": 56,

 "netIncome": 16999.29

 "@context": [

 "https://smartdatamodels.org//context.jsonld",

 "https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/census-

ngsi.jsonld"

]

}

7.11.2 PopulationObserved

This model is a new NGSI-LD compliant model defined in URBANITE to store population
statistics by age, gender, districts, income and employment.

The context is defined in:

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/population-ngsi.jsonld

Example:

{

 "id": "id",

 "type": "PopulationObserved",

 "name": "name",

 "population-summary": {

 "city-inhabitants": {

 "type": "number",

 "value": 243262

 },

 "population-density": {

 "type": "number",

 "value": 1138,

 "unit": "inhabitants/km^2"

 },

 "males": {

 "type": "number",

 "value": 116350

 },

 "females": {

 "type": "number",

 "value": 126912

 }

 },

 "population-ages": {

 "0": {

 "M": 895, "F": 803

 },

 "65-69": {

 "M": 7157, "F": 7846

 },

 "5-9": {

 "M": 5397, "F": 5217

 },

 "40-44": {

 "M": 8142, "F": 8581

DRAFT VERSIO
N

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/population-ngsi.jsonld

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 48 of 88

 },

 "45-49": {

 "M": 8743, "F": 9590

 },

 "20-24": {

 "M": 6596, "F": 5946

 },

 "25-29": {

 "M": 7034, "F": 7045

 },

 "90-94": {

 "M": 654, "F": 1692

 },

 "70-74": {

 "M": 6340, "F": 7412

 },

 "95-99": {

 "M": 155, "F": 490

 },

 "75-79": {

 "M": 4574, "F": 5949

 },

 ">100": {

 "M": 47, "F": 90

 },

 "50-54": {

 "M": 9077, "F": 9871

 },

 "55-59": {

 "M": 8724, "F": 9626

 },

 "30-34": {

 "M": 7041, "F": 7042

 },

 "35-39": {

 "M": 7227, "F": 7325

 },

 "1-4": {

 "M": 3833, "F": 3596

 },

 "10-14": {

 "M": 5684, "F": 5505

 },

 "15-19": {

 "M": 6222, "F": 5812

 },

 "80-84": {

 "M": 4574, "F": 4900

 },

 "85-89": {

 "M": 1933, "F": 3630

 },

 "60-64": {

 "M": 7789, "F": 8943

 }

 },

 "districts-summary": {

 "district-I": {

 "residents": {

 "type": "number",

 "value": 22199

 },

 "families": {

 "type": "number",

 "value": 8819

 },

 "males": {

 "type": "number",

 "value": 10805

 },

 "females": {

 "type": "number",

 "value": 11394

 },

 "ages": {

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 49 of 88

 "0": {

 "M": 87, "F": 78

 },

 "65-69": {

 "M": 626, "F": 639

 },

 "5-9": {

 "M": 511, "F": 450

 },

 "40-44": {

 "M": 762, "F": 791

 },

 "45-49": {

 "M": 800, "F": 922

 },

 "20-24": {

 "M": 681, "F": 579

 },

 "25-29": {

 "M": 660, "F": 716

 },

 "90-94": {

 "M": 62, "F": 135

 },

 "70-74": {

 "M": 549, "F": 614

 },

 "95-99": {

 "M": 13, "F": 26

 },

 "75-79": {

 "M": 427, "F": 510

 },

 ">100": {

 "M": 3, "F": 9

 },

 "50-54": {

 "M": 875, "F": 941

 },

 "55-59": {

 "M": 825, "F": 760

 },

 "30-34": {

 "M": 608, "F": 633

 },

 "35-39": {

 "M": 649, "F": 662

 },

 "1-4": {

 "M": 368, "F": 335

 },

 "10-14": {

 "M": 528, "F": 506

 },

 "15-19": {

 "M": 579, "F": 565

 },

 "80-84": {

 "M": 312, "F": 438

 },

 "85-89": {

 "M": 205, "F": 324

 },

 "60-64": {

 "M": 675, "F": 761

 }

 }

 },

 "district-III": {

 …

 },

 "district-VI": {

 …

 },

 "district-II": {

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 50 of 88

 …

 },

 "district-IV": {

 …

 },

 "district-V": {

 …

 },

 "education-percentages": {

 "illiterates": {

 "type": "percentage",

 "value": 1.1,

 "unit": "%"

 },

 "literates-without-educational-qualifications": {

 "type": "percentage",

 "value": 5,

 "unit": "%"

 },

 "high-school-diploma": {

 "type": "percentage",

 "value": 31.5,

 "unit": "%"

 },

 "phd-or-equivalent-education": {

 "type": "percentage",

 "value": 0.3,

 "unit": "%"

 },

 "elementary-school-license": {

 "type": "percentage",

 "value": 17,

 "unit": "%"

 },

 "secondary-school-certificate": {

 "type": "percentage",

 "value": 33.5,

 "unit": "%"

 }

 },

 "working-people": {

 "level-of-employment": {

 "type": "percentage",

 "value": 39.694,

 "unit": "%"

 },

 "average-income": {

 "type": "number",

 "value": 15755,

 "unit": "€ per person per year"

 },

 "average-retirement-pension": {

 "type": "number",

 "value": 1031.15,

 "unit": "€ per month"

 }

 },

 "@context": [

 "https://smartdatamodels.org//context.jsonld",

 "https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/population-

ngsi.jsonld"

]

}

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 51 of 88

7.12 ElectroMagneticObserved

This model is based on FIWARE’s ElectroMagneticObserved37 data model. The Data Model is
intended to measure excessive electric and magnetic fields (EMFs), or radiation in a work or
public environment according to the level of exposure to electromagnetic fields on the air. The
frequency of the hertzian waves is conventionally lower than 300 GHz, propagating in space
without artificial guide.

In URBANITE, this model is used to store historical data from Messina.

Example:

[{

 "_id": "urn:ngsi-ld:electromagneticNoise:messina:tribunale:1546300861000",

 "dateObserved": {

 "$date": "2019-01-01T00:01:01.000Z"

 },

 "description": "The eMF value refers to electromagnetic fields measured in

V/m (volt per meter).",

 "EMF": "1.4",

 "location": {

 "coordinates": [15.5523241, 38.188385],

 "type": "Point"

 },

 "source": "https://urbanite-node1.comune.messina.it",

 "type": "ElectroMagneticObserved",

 "@context": ["https://smartdatamodels.org/context.jsonld",

"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"],

 "dateCreated": {

 "$date": "2022-09-08T10:04:27.059Z"

 },

 "dateModified": {

 "$date": "2022-09-08T14:22:56.286Z"

 }

}]

7.13 NoiseLevelObserved

This model is based on FIWARE’s NoiseLevelObserved38 data model. It is used to store an
observation of those acoustic parameters that estimate noise pressure levels at a certain place
and time.

In URBANITE, this model is used to store historical data from Messina.

Example:

 [{

 "_id": "urn:ngsi-ld:noiseLevelObserved:messina:boccetta1577836895000",

 "alternateName": "Noise Pollution",

 "dateObservedFrom": {

 "$date": "2020-01-01T00:01:35.000Z"

 },

 "dateObservedTo": {

 "$date": "2020-01-01T00:01:35.000Z"

 },

 "description": "magnitude",

 "location": {

 "coordinates": [15.539456, 38.2022615],

 "type": "Point"

 },

37https://github.com/smart-data-
models/dataModel.Environment/tree/master/ElectroMagneticObserved
38https://github.com/smart-data-models/dataModel.Environment/tree/master/NoiseLevelObserved

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 52 of 88

 "source": "https://urbanite-node1.comune.messina.it",

 "type": "NoiseLevelObserved",

 "frequencies": {},

 "@context": ["https://smartdatamodels.org/context.jsonld",

"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"],

 "dateCreated": {

 "$date": "2022-07-22T15:02:43.267Z"

 },

 "dateModified": {

 "$date": "2022-07-22T15:02:43.267Z"

 }

}]

7.14 MapLayer

This model is a new NGSI-LD compliant model defined in URBANITE to store map layers
(GeoJSON files) of the use cases.

The context is defined in:

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/maplayer-ngsi.jsonld

Example:

[

 {

 "id": "urn:ngsi-ld:MapLayer:messina:zone:Y",

 "alternateName": "test.geojson",

 "description": "test",

 "name": "Wifi zone Y",

 "type": "MapLayer",

 "@context": [

 "https:\/\/smartdatamodels.org\/context.jsonld",

 "https:\/\/uri.etsi.org\/ngsi-ld\/v1\/ngsi-ld-core-context.jsonld",

 "https:\/\/git.code.tecnalia.com\/urbanite\/public\/-

\/raw\/main\/datamodels\/maplayer-ngsi.jsonld"

],

 "map": {

 "type": "FeatureCollection",

 "name": "Helsinki_Espoo_kaupunkipyöräasemat_2021",

 "description": "...",

 "crs": {

 "type": "name",

 "properties": {

 "name": "urn:ogc:def:crs:OGC:1.3:CRS84"

 }

 },

 "features": [

 {

 "type": "Feature",

 "properties": {

 "FID": 1,

 "ID": "501",

 "Nimi": "Hanasaari",

 "Namn": "Hanaholmen",

 "Name": "Hanasaari",

 "Osoite": "Hanasaarenranta 1",

 "Adress": "Hanaholmsstranden 1",

 "Kaupunki": "Espoo",

 "Stad": "Esbo",

 "Operaattor": "CityBike Finland",

 "Kapasiteet": 10,

 "x": 24.840319,

 "y": 60.16582

 },

 "geometry": {

 "type": "Point",

 "coordinates": [

 24.840319,

 60.165819999000064

]

DRAFT VERSIO
N

https://git.code.tecnalia.com/urbanite/public/-/raw/main/datamodels/maplayer-ngsi.jsonld

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 53 of 88

 }

 },

 {

 "type": "Feature",

 "properties": {

 "FID": 2,

 "ID": "503",

 "Nimi": "Keilalahti",

 "Namn": "Kägelviken",

 "Name": "Keilalahti",

 "Osoite": "Keilalahdentie 2",

 "Adress": "Kägelviksvägen 2",

 "Kaupunki": "Espoo",

 "Stad": "Esbo",

 "Operaattor": "CityBike Finland",

 "Kapasiteet": 28,

 "x": 24.827467,

 "y": 60.171524

 },

 "geometry": {

 "type": "Point",

 "coordinates": [

 24.827467,

 60.171523999000044

]

 }

 },

 …

 {

 "type": "Feature",

 "properties": {

 "FID": 457,

 "ID": "405",

 "Nimi": "Jollas",

 "Namn": "Jollas",

 "Name": "Jollas",

 "Osoite": "Jollaksentie 33",

 "Adress": "Jollasvägen 33",

 "Kaupunki": " ",

 "Stad": " ",

 "Operaattor": " ",

 "Kapasiteet": 16,

 "x": 25.0616678668253,

 "y": 60.1644074899774

 },

 "geometry": {

 "type": "Point",

 "coordinates": [

 25.06166786700004,

 60.16440748900004

]

 }

 }

],

 "@context": [

"https:\/\/urldefense.com\/v3\/__https:\/\/smartdatamodels.org\/context.jsonld__;!!LQkDI

ss!UMW6FTBZUI53fk6oRsTj8p_UHVmJftyyryRSPLxpMnHOnl2q72j0USTzSTmZ9paGYcMEbUxaPdbF9LVvrlhM_

F86914-U1nUmwk$ "

]

 },

 "dateCreated": "2022-09-19T09:18:21.660Z",

 "dateModified": "2022-09-19T10:53:34.308Z"

 }

]

7.15 Metadata

Metadata must be provided in a DCAT-compliant format.

Example:

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 54 of 88

{

 "@graph": [

 {

 "@id": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data Bilbao"},

 "issued": "2021-06-17T09:24:56",

 "modified": "2021-06-17T09:25:03",

 "publisher": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data Bilbao"},

 "distribution": [

 "https://urbanite-project.eu/ontology/distribution/52c20f95-66a2-412d-9ac0-

efe673707615",

 "https://urbanite-project.eu/ontology/distribution/5b9e9ed4-769c-435a-af0f-

e25b41adbf6f",

 "https://urbanite-project.eu/ontology/distribution/1be969b1-88bd-4209-808a-

004ccaef7c30"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/1be969b1-88bd-4209-808a-

004ccaef7c30",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL":

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2016%7D"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/52c20f95-66a2-412d-9ac0-

efe673707615",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2018 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2018",

 "accessURL":

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2018%7D"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/5b9e9ed4-769c-435a-af0f-

e25b41adbf6f",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL":

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2015%7D"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id": "http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 55 of 88

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher", "@type": "@id"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

}

8 APPENDIX: Storage & Retrieval API

8.1 Storage

8.1.1 insertTData (POST)

Table 4: API for data insertion

/insertTData Adds new data of a specific type to the database of a city.

Method

POST

Input Params (* means mandatory)

model*

(path param)

Text with the type of the data to be inserted. Must be one of the implemented data types,
currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

data*

(request body)

Text, in a JSON array format, with the data to be inserted. These data must be in the format
corresponding to the type of data indicated in the "model" parameter.

Success response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 56 of 88

200 If all the input parameters are right, the method will return this code, and the JSON response
will contain three fields with the details of the operations done:

• inserted: array with the IDs of the elements inserted successfully,

• updated: array with the IDs of the elements updated.

• notInserted: array with the IDs of the elements that couldn’t be inserted. In this
case, also will have a field reason with the description of the error.

Example:

{

 "inserted": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_-363a"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_-3603"

 }

],

 "notInserted": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_1dec",

 "reason": "Wrong input data, missing some required field(s) or wrong

values."

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_1df6",

 "reason": "Wrong input data, missing some required field(s) or wrong

values."

 }

],

 "updated": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4968"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4969"

 }

]

}

Error response

400 Bad Request

The method checks if the data sent is in the required format (list of elements) and if each
element to be inserted corresponds to the indicated model. It also checks if the model and
city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Example:

{

"Error":"Input data is not in required format (list of 'Traffic Flow

Observation' objects)"

}

Sample call

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 57 of 88

curl -X POST

"http://[server:port]/data/insertTData/trafficFlowObserved/bilbao"

-H "accept: application/json"

-H "Content-Type: application/json"

-d "[

 {

 \"id\":\"urn:ngsi-

ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4968\",

 \"address\":{

 \"addressCountry\":\"ES\",

 \"addressLocality\":\"Bilbao\"

 },

 \"averageVehicleSpeed\":26,

 \"dateObserved\":\"2021-09-01T08:05:00Z\",

 \"intensity\":77,

 \"location\":{

 \"coordinates\":[[[505863.2934643,4790330.91052876],

 [505864.01,4790329.365]]],

 \"type\":\"Polygon\"

 },

 \"occupancy\":1,

 \"type\":\"TrafficFlowObserved\",

 \"@context\":[

 \"https://smartdatamodels.org/context.jsonld\",

 \"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

 },

 {

 \"id\":\"urn:ngsi-

ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4969\",

 \"address\":{

 \"addressCountry\":\"ES\",

 \"addressLocality\":\"Bilbao\"

 },

 \"averageVehicleSpeed\":36,

 \"dateObserved\":\"2021-09-01T08:05:00Z\",

 \"intensity\":481,

 \"location\":{

 \"coordinates\":[[[504426.40986984,4790030.56457333],

 [504426.745,4790032.297]]],

 \"type\":\"Polygon\"

 },

 \"occupancy\":0.04,

 \"type\":\"TrafficFlowObserved\",

 \"@context\":[

 \"https://smartdatamodels.org/context.jsonld\",

 \"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

 }

]"

city
model

First element
to be inserted

Second
element to be
inserted

8.1.2 updateTData (PUT)

Table 5: API for data update

/updateTData Updates a specific record (identified by its ID field) of the database.

Method

PUT

Input Params (* means mandatory)

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 58 of 88

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

id*

(path param)

ID of the element to be updated.

data*

(request body)

Text, in a JSON format, with the data to be updated. This data must be in the format
corresponding to the type of data indicated in the "model" parameter.

Success response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 59 of 88

200 If all the input parameters are right, the method will return this code, and the JSON response
will contain one field updatedData with the new data of the element once updated.

Example:

{

 "updatedData": {

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 16,

 "dateObserved": "2021-08-17T00:45:00Z",

 "intensity": 36,

 "location": {

 "coordinates": [[[504417.9371092392,4790030.564573327],

 [504453.27293873084, 4790030.564573327],

 [504453.27293873084, 4790133.21077546],

 [504417.9371092392, 4790133.21077546]]],

 "type": "Polygon"

 },

 "name": "273",

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-08-17T09:37:43.393Z",

 "dateModified": "2021-09-07T07:31:35.263Z",

 "id": "urn:ngsi-ld:TrafficFlowObserved:273:070920210045AAAA"

}

}

Error response

400 Bad Request

The method checks if the data sent is in JSON format and if it corresponds to the indicated
model. It also checks if the ID field of the data (mandatory field) is the same as the one
passed as parameter, as well if the model and city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Examples:

{

 "Error": "Input data is not in required format ('Traffic Flow Observation'

object)"

}

{

 "Error": "Wrong input data, IDs are different."

}

404 Not Found

If the element to be update doesn’t exist, a 404 code will be returned, with a JSON response
with the error:

{

 "Error": "Document 'urn:ngsi-ld:TrafficFlowObserved:273:07092023456' not

found."

}

Sample call

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 60 of 88

curl -X PUT

"http://[server:port]/data/updateTData/trafficFlowObserved/bilbao/

urn%3Angsi-ld%3ATrafficFlowObserved%3A273%3A070920210045AAAA"

-H "accept: application/json"

-H "Content-Type: application/json"

-d “

{\"id\":\"urn:ngsi-ld:TrafficFlowObserved:273:070920210045AAAA\",

\"address\":{

\"addressCountry\":\"ES\",

\"addressLocality\":\"Bilbao\"

},

\"averageVehicleSpeed\":16,

\"dateObserved\":\"2021-08-17T00:45:00Z\",

\"intensity\":36,

\"location\":

{

\"coordinates\":[[[504417.9371092392,4790030.564573327],

[504453.27293873084,4790030.564573327],

[504453.27293873084,4790133.21077546],

[504417.9371092392,4790133.21077546]]],

\"type\":\"Polygon\"

},

\"name\":\"273\",

\"type\":\"TrafficFlowObserved\",

\"@context\":[

\"https://smartdatamodels.org/context.jsonld\",

\"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

}"

city
model
id

Data to
be
updated

8.1.3 deleteTDate (DELETE)

Table 6: API to delete data

/deleteTData Delete a single record from the database

Method

DELETE

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be deleted. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 61 of 88

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

id*

(path param)

ID of the element to be deleted.

Success response

200 If all the input parameters are right, the method will return this code, and the JSON response
will contain one field with the id deleted.

Example:

{

 "deleted": "urn:ngsi:touristTrip:bikes:61825871"

}

Error response

400 Bad Request

The method checks if the data sent contains a valid id.

If this check fails, a Bad Request code will be returned. In this case, the method will return a
JSON response, with just one field Error, that will contain a description of the error.

Examples:

{

 "Error": "Wrong input data."

}

404 Not Found

If the element to be deleted doesn’t exist, a 404 code will be returned, with a JSON response
with the error:

{

 "Error": "Document 'urn:ngsi:touristTrip:bikes:61825871' not found."

}

Sample call

curl -X DELETE "https:// [server:port]

/data/deleteTData/touristTrip/bilbao/urn%3Angsi%3AtouristTrip%3Abikes%3A61

825871" -H "accept: application/json"

8.2 Retrieval

8.2.1 getTData (GET)

Table 7: API for data retrieval

/getTData Gets data of the specified type from the database. Some filters can by applied to model
fields.

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 62 of 88

Method

GET

Input Params (* means mandatory)

model*

(path
param)

Text, with the data type of the element to be updated. Must be one of the implemented
data types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

city*

(path
param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

filters

(query
param)

Different filters to be applied to the search of the records to be returned. They must be in
JSON format and match the names of the fields of the model. Otherwise, a BAD_REQUEST
error will be returned.

Example:

{

"occupancy": 10,

"intensity": 20

}

both fields, occupancy and intensity are part of the trafficFlowObserved model.

limit

(query
param)

Number of records to be retrieved. If not set, the default number of records (1000) will be
returned.

Success response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 63 of 88

200 If all the input parameters are right, the method will return this code, and the response
will be a JSON array with the list of the elements requested.

Example:

[

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bbf3cb8f8_851",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-07T07:45:00Z",

 "intensity": 10,

 "location": {

 "coordinates":

[[[504169.87,4790169.594],[504215.57915011,4790128.87897186],[504268.78134

883,4790081.60210874]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-07T07:53:43.872Z",

 "dateModified": "2021-09-07T07:53:43.872Z"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:59d4ce0d_17bbf0b8c3f_-5ba8",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 4,

 "dateObserved": "2021-09-07T06:50:00Z",

 "intensity": 10,

 "location": {

 "coordinates":

[[[505482.00123305,4789609.88571801],[505595.37956903,4789700.8144343],[50

5621.18245562,4789721.03079363],[505621.339,4789721.18]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-07T06:57:32.011Z",

 "dateModified": "2021-09-07T06:57:32.011Z"

 }

]

Error response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 64 of 88

400 Bad Request

The method checks if the filters sent are in the required format (JSON) and if its content
are fields of the specified data model. It also checks if the model and city parameters are
the expected values, and if the limit parameter (if set) is greater than 0.

If any of these checks fail, a Bad Request code will be returned. In this case, the method
will return a JSON response, with just one field Error, that will contain a description of the
error.

Example:

{

 "Error": "Model {trafficFlowObserved} has not a field 'speed'"

}

Sample call

curl -X GET

"http://[server:port]/data/getTData/trafficFlowObserved/bilbao?

filters=%7B%22intensity%22%3A%2010%7D

&limit=2"

-H "accept: application/json"

city
model
 filters
 limit

8.2.2 getTData (single record) (GET)

Table 8: API for data retrieval (specific record)

/getTData
(single record)

Gets a specific record from the database, identified by its ID.

Method

GET

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 65 of 88

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

id*

(path param)

ID of the element to be updated.

Success response

200 If the element requested exists, the method will return this code, and the JSON response will
contain the element data.

Example:

{

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17b9e3ebc45_24d2",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-08-31T22:00:00Z",

 "intensity": 9,

 "location": {

 "coordinates": [[[505863.2934643,4790330.91052876],

[505864.01,4790329.365],

[505864.637,4790327.54]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-08-31T22:09:23.993Z",

 "dateModified": "2021-08-31T22:09:23.993Z"

}

Error response

400 Bad Request

The method checks if the model and city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Example:

{

"Error":"Invalid value 'trafficFlow' for parameter 'model'"

}

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 66 of 88

404 Not Found

If the element requested doesn’t exist, a 404 code will be returned, with a JSON response
with the error:

{

 "Error": "Document 'urn:ngsi-ld:TrafficFlowObserved:273:07092023456' not

found."

}

Sample call

curl -X GET

"http://[server:port]/data/getTData/trafficFlowObserved/bilbao/

urn%3Angsi-ld%3ATrafficFlowObserved%3A740c2b3d_17b9e3ebc45_24d2"

-H "accept: application/json"

city
model
id

8.2.3 getTDataRange (GET)

Table 9: API for data retrieval (time range)

/getTDataRange Gets data of a specific model from the database within a specific time range.

Method

GET

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented
data types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 67 of 88

startDate*

(query param)

Date and time (ISO860139 UTC format) from which to get the data.

Mandatory if parameter endDate is not present.

Example: 2021-01-07T00:00:00.000Z

endDate*

(query param)

Date and time (ISO8601 UTC format) until which to get the data.

Mandatory if parameter startDate is not present.

Example: 2021-01-08T22:45:00.000Z

limit

(query param)

Number of records to be retrieved. If not set, the default number of records (1000) will be
returned.

Success response

39 https://www.iso.org/iso-8601-date-and-time-format.html

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 68 of 88

200 If all the input parameters are right, the method will return this code, and the response will
be a JSON array with the list of the elements requested.

Example:

[

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bb86bfdd2_28f0",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-06T00:00:00Z",

 "intensity": 0,

 "location": {

 "coordinates": [[[505863.2934643,4790330.91052876],

[505875.24029728,4790333.17459119],

[505863.2934643,4790330.91052876]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-06T00:07:19.758Z",

 "dateModified": "2021-09-06T00:07:19.758Z"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bb86bfdd2_28f1",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-06T00:00:00Z",

 "intensity": 18,

 "location": {

 "coordinates": [[[504426.40986984,4790030.56457333],

[504425.67779232,4790043.20283264],

[504426.40986984,4790030.56457333]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-06T00:07:19.760Z",

 "dateModified": "2021-09-06T00:07:19.760Z"

 }

]

Error response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 69 of 88

400 Bad Request

The method makes several checks of the parameters. It checks if the model and city
parameters are the expected values, and if the limit parameter (if set) is greater than 0.
Also checks that at least one of the parameters startDate and endDate is set, and if so,
checks that they are in ISO8601 format.

If any of these checks fail, a Bad Request code will be returned, and will return a JSON
response, with just one field Error, that will contain a description of the error.

Examples:

{

"Error": "No time range specified. 'startDate' and/or 'endDate' must be

indicated."

}

{

"Error": "Invalid value '2021/08/01' for parameter 'startDate'"

}

Sample call

curl -X GET

"http://[server:port]/data/getTDataRange/trafficFlowObserved/bilbao?

startDate=2021-09-05T00%3A00%3A00.000Z

&endDate=2021-09-06T00%3A00%3A00.000Z

&limit=2"

–H "accept: application/json"

city
model
startDate
endDate
 limit

curl -X GET

"http://[server:port]/data/getTDataRange/trafficFlowObserved/bilbao?

startDate=2021-09-05T00%3A00%3A00.000Z

&limit=2"

–H "accept: application/json"

city
model
startDate
 limit

8.2.4 getSupportedDataModels (GET)

Table 10: API for the retrieval of the data models information

/getSupportedDa
taModels

Returns information about all the data models that are currently implemented.

Method

GET

Input Params (* means mandatory)

None

Success response

200 Returns a JSON array with the information of the data models implemented. Each element
(model) will have the following fields:

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 70 of 88

• id: identifier of the model, that is usually used as model parameter in the other
services.

• name: full name of the model.

• description: brief description of the model.

• reference: link to the official reference of the model (i.e: FIWARE models). If the
model has been developed specifically for the project, the reference will be
empty.

• example: an example of the structure of the model.

Example (reduced to two models only):

[

 {

 "id": "trafficFlowObserved",

 "name": "Traffic Flow Observed",

 "description": "An observation of traffic flow conditions at a certain

place and time.",

 "reference": "https://github.com/smart-data-

models/dataModel.Transportation/tree/master/TrafficFlowObserved",

 "example": {

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Valladolid",

 "streetAddress": "Avenida de Salamanca",

 "type": "PostalAddress"

 },

 "averageHeadwayTime": 0.5,

 "averageVehicleLength": 9.87,

 "averageVehicleSpeed": 52.6,

 "dateObserved": "2016-12-07T11:10:00Z",

 "id": "urn:ngsi-ld:TrafficFlowObserved:TrafficFlowObserved-Valladolid-

osm-60821110",

 "intensity": 197,

 "laneDirection": "forward",

 "laneId": 1,

 "location": {

 "coordinates": [[-4.73735395519672,41.6538181849672],[-

4.73414858659993,41.6600594193478],[-4.73447575302641,41.659585195093]],

 "type": "LineString"

 },

 "occupancy": 0.76,

 "reversedLane": false,

 "type": "TrafficFlowObserved"

 }

 },

 {

 "id": "calendar",

 "name": "Calendar",

 "description": "Information about calendars: year, city, days...",

 "reference": "",

 "example": {

 "example": [

 {

 "id": "urn:ngsi-ld:Calendar:Bilbao:2015",

 "type": "Calendar",

 "city": "Bilbao",

 "location": {

 "coordinates": [-2.93609619140625,43.26345626603949],

 "type": "Point"

 },

 "year": 2015,

 "days": [

 "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_02"

],

 "createdAt": "2021-05-20T09:32:08.809Z",

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 71 of 88

 "modifiedAt": "2021-05-20T09:52:04.255Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld",

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld2"

]

 },

 {

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "type": "DaySpecification",

 "date": "2015-01-01",

 "description": "AÃƒÂ±o nuevo",

 "workingDay": 0,

 "schoolDay": 0,

 "publicHoliday": 3,

 "weekDay": 4,

 "createdAt": "2021-05-24T13:26:41.828Z",

 "modifiedAt": "2021-05-25T08:49:11.841Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

 },

 {

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_02",

 "type": "DaySpecification",

 "date": "2015-01-02",

 "description": "",

 "workingDay": 1,

 "schoolDay": 1,

 "publicHoliday": 0,

 "weekDay": 5,

 "createdAt": "2021-05-25T08:26:22.811Z",

 "modifiedAt": "2021-05-25T08:49:11.946Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

 }

]

 }

 }

]

Sample call

curl -X GET

"http://localhost/data/getSupportedDataModels"

-H "accept: application/json"

8.2.5 getDistinct (GET)

Table 11: API for the retrieval of distinct values.

/getTDistinct Returns the different values for a specific field.

Method

GET

Input Params (* means mandatory)

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 72 of 88

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

• event

• censusObserved

• pointOfInterest

• transportStation

• gtfsShape

• touristTrip

• originDestinationMatrix

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

field (query
param)

Data model field to return its different values.

Success response

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 73 of 88

200 If all the input parameters are right, the method will return this code, and the response will
be a JSON array with the list of the elements requested.

Example:

{

 "values": [

 {

 "name": "8",

 "description": "Basurto-Zorroza"

 },

 {

 "name": "6",

 "description": "Abando"

 },

 {

 "name": "5",

 "description": "Ibaiondo"

 },

 {

 "name": "2",

 "description": "Uríbarri"

 },

 {

 "name": "7",

 "description": "Recalde"

 },

 {

 "name": "1",

 "description": "Deusto"

 },

 {

 "name": "3",

 "description": "Otxarkoaga-Txurdinaga"

 },

 {

 "name": "4",

 "description": "Begoña"

 }

]

}

}

Error response

400 Bad Request

The method makes several checks of the parameters. It checks if the model and city
parameters are the expected values, also checks that the fields correspond to the model.

If any of these checks fail, a Bad Request code will be returned, and will return a JSON
response, with just one field Error, that will contain a description of the error.

Example:

{

 "Error": "Wrong fields , please check 'GtfsShape' data model's fields."

}

Sample call

curl -X GET

"http://[server:port]/data/getDistinct/gtfsShape/bilbao?

field=description%2Cname

&limit=2"

–H "accept: application/json"

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 74 of 88

8.3 Metadata

8.3.1 dataset (PUT)

Table 12: API for the insert and update of metadata

/dataset Adds new metadata of a dataset into the database, of updates the metadata if already
exists for that id.

Method

PUT

Input Params (* means mandatory)

id*

(query param)

Unique identifier of the metadata.

data*

(request body)

Text, in JSON format, with the metadata to be inserted.

Success response

200 If all the input parameters are right, the method will return this code, and the JSON
response will contain three fields with the details of the operations done:

• inserted: array with the ID of the metadata if it has been inserted successfully.

• updated: array with the ID of the metadata if it has been been updated.

• notInserted: array with the ID of the metadata if it couldn’t be inserted. In this
case, also will have a field reason with the description of the error.

Example:

{

 "inserted": [

 {

 "id": "6bb9c361_177a635e86a23333333"

 }

],

 "notInserted": [],

 "updated": []

}

 DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 75 of 88

Error response

400 Bad Request

The method checks that the ID and the metadata has been included, and that this one is in
JSON format.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the
error.

Example:

{

"Error": "Input metadata is not in JSON format"

}

Sample call

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 76 of 88

curl -X PUT

"http://[server:port]/data/dataset?id=6bb9c361_177a635e86a2"

-H "accept: application/json"

-H "Content-Type: application/json"

-d "{

 \"_id\":\"6bb9c361_177a635e86a2\",

 \"@graph\": [

 {

 \"@id\":\"https://urbanite-project.eu/ontology/URBANITE_PROJECT\",

 \"@type\":\"foaf:Organization\",

 \"homepage\":\"https://urbanite-project.eu/\",

\"name\":\"URBANITE\"

 },

 {

\"@id\":\"https://urbanite-project.eu/ontology/dataset/Bilbao_Calendar\",

\"@type\":\"dcat:Dataset\",

 \"description\": {

\"@language\":\"en\",

 \"@value\":\"Calendar data Bilbao\"},

\"issued\":\"2021-05-12T10:36:46\",

 \"modified\":\"2021-05-12T15:36:46\",

 \"publisher\":\"https://urbanite-

project.eu/ontology/URBANITE_PROJE\",

 \"title\": {

 \"@language\":\"en\",

 \"@value\":\"Calendar data Bilbao\"},

 \"distribution\": [

 \"https://urbanite-project.eu/ontology/distribution/a732f6c6-fcd8-

4962-8aa9-db7d913a20ae\"],

 \"keyword\":[\"Calendar\",\"Bilbao\"]

 },

 {

 \"@id\":\"https://urbanite-project.eu/ontology/distribution/a732f6c6-

fcd8-4962-8aa9-db7d913a20ae\",

 \"@type\":\"dcat:Distribution\",

 \"description\":\"Calendar data Bilbao year 2015 in NGSI-LD

representation\",

 \"format\":\"http://publications.europa.eu/resource/authority/file

-type/JSON_LD\",

\"license\":\"http://publications.europa.eu/resource/authority/licence/CC_B

Y\",

 \"title\":\"Calendar data Bilbao 2015\",

 \"accessURL\":\"http://storageAPI-to-bedefined/2015\"

 }

],

 \"@context\":

 {

 \"name\":{\"@id\":\"http://xmlns.com/foaf/0.1/name\"},

 \"homepage\":{\"@id\":\"http://xmlns.com/foaf/0.1/homepage\"},

 \"accessURL\":{\"@id\":\"http://www.w3.org/ns/dcat#accessURL\"},

 \"title\":{\"@id\":\"http://purl.org/dc/terms/title\"},

 \"license\":{\"@id\":\"http://purl.org/dc/terms/license\"},

 \"format\":{\"@id\":\"http://purl.org/dc/terms/format\"},

 \"description\":{\"@id\":\"http://purl.org/dc/terms/description\"},

\"distribution\":{\"@id\":\"http://www.w3.org/ns/dcat#distribution\",\"@typ

e\":\"@id\"},

 \"keyword\":{\"@id\":\"http://www.w3.org/ns/dcat#keyword\"},

\"issued\":{\"@id\":\"http://purl.org/dc/terms/issued\",\"@type\":\"http://

www.w3.org/2001/XMLSchema#dateTime\"},

\"publisher\":{\"@id\":\"http://purl.org/dc/terms/publisher\",\"@type\":\"@

id\"},

\"modified\":{\"@id\":\"http://purl.org/dc/terms/modified\",\"@type\":\"htt

p://www.w3.org/2001/XMLSchema#dateTime\"},

 \"dct\":\"http://purl.org/dc/terms/\",

 \"rdf\":\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\",

 \"xsd\":\"http://www.w3.org/2001/XMLSchema#\",

 \"rdfs\":\"http://www.w3.org/2000/01/rdf-schema#\",

 \"dcat\":\"http://www.w3.org/ns/dcat#\",

 \"foaf\":\"http://xmlns.com/foaf/0.1/\",

 \"dc\":\"http://purl.org/dc/elements/1.1/\"

 }

}"

Id

M
e
t
a
d
a
t
a

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 77 of 88

8.3.2 dataset (DELETE)

Table 13: API for the deletion of metadata

/dataset Delete the metadata of a dataset from the database.

Method

DELETE

Input Params (* means mandatory)

id*

(query param)

Unique identifier of the metadata.

Success response

200 If the metadata with the id passed is deleted, the method will return this code, and the
JSON response will contain one field deleted with the id of the metadata deleted.

Example:

{

"deleted": "6bb9c361_177a635e86a534543"

}

Error response

400 Bad Request

The method checks that the id parameter has been included, otherwise Bad Request code
will be returned.

In this case, the method will return a JSON response, with just one field Error, that will
contain a description of the error.

Example:

{

"Error":"Parameter 'id' is required."

}

404 Not found

If the metadata with the id passed doesn’t exist, this error will be returned with a JSON
response with the error.

Example:

{

"Error":"Dataset '6bb9c361_177a635e86a234’ not found."

}

Sample call

curl -X DELETE

"http://[server:port]/data/dataset?id=6bb9c361_177a635e86a534543dasdas"

-H "accept: application/json"

 id

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 78 of 88

8.3.3 getDataset (GET)

/getDataset Gets the metadata of a specific dataset from the database.

Method

GET

Input Params (* means mandatory)

id*

(query param)

Unique identifier of the metadata.

Success response

200 If the metadata with the id passed exists, the method will return this code, and the JSON
response will contain the metadata stored in the database in JSON format.

Example:

{

 "@graph": [

 {

 "@id": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data Bilbao"},

 "distribution": [

 "https://urbanite-project.eu/ontology/distribution/a732f6c6-

fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-project.eu/ontology/distribution/059fd3cc-

92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 79 of 88

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id": "http://www.w3.org/ns/dcat#distribution",

"@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher", "@type":

"@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

}

Error response

400 Bad Request

The method checks that the id parameter has been included, otherwise Bad Request code
will be returned.

In this case, the method will return a JSON response, with just one field Error, that will
contain a description of the error.

Example:

{

"Error":"Parameter 'id' is required."

}

404 Not found

If the metadata with the id passed doesn’t exist, this error will be returned with a JSON
response with the error.

Example:

{

"Error":"Dataset '6bb9c361_177a635e86a234’ not found."

}

Sample call

curl -X GET

"http://[server:port]/data/getDataset?id=6bb9c361_177a635e86a"

-H "accept: application/json"

 id

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 80 of 88

8.3.4 getCatalogueDatasets (GET)

Table 14: API for the retrieval of dataset metadata

/getCatalogueDat
asets

Gets the metadata of all the datasets stored in the database.

Method

GET

Input Params (* means mandatory)

None

Success response

200 Returns a JSON array with all the datasets stored.

Example:

[

 {

 "id": "6bb9c361_177a635e86a",

 "metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar","Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 81 of 88

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

}

 }

 },

 {

 "id": "6bb9c361_177a635sfd124a",

 "metadata": {

 "id": "6bb9c361_177a635sfd124a",

"metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Messina"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Messina"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-63ws-4f3d-97de-fdgs4fdh2eg",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-43s3-4gds-w436-fhd45sdaf32"

],

 "keyword": ["Calendar","Messina"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-63ws-4f3d-97de-fdgs4fdh2eg",

 "@type": "dcat:Distribution",

 "description": "Calendar data Messina year 2016 in NGSI-LD

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 82 of 88

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Messina 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-43s3-4gds-w436-fhd45sdaf32",

 "@type": "dcat:Distribution",

 "description": "Calendar data Messina year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Messina 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

 }

 }

 }

]

Sample call

curl -X GET

"http://[server:port]/data/getCatalogueDatasets"

-H "accept: application/json"

8.3.5 searchDatasets (GET)

Table 15: API for the search and retrieval of dataset metadata

/searchDatasets Searches among the metadata of the existing dataset.

It makes a search in typical metadata fields: title, description andkeyword.

All the tags search must be present in at least one of these fields.

Method

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 83 of 88

GET

Input Params (* means mandatory)

search

(query param)

Tags to search for, separated by a space.

Optional. If not set, all the metadata will be returned.

Example: Calendar Messina

Success response

200 The method will return this code, and the JSON response will contain a JSON array with
that metadata stored in the database that contain all the tags passed in the parameter
search.

Example:

[

 {

 "id": "6bb9c361_177a635e86a",

 "metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 84 of 88

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

 }

 }

]

Sample call

curl -X GET

"http://[server:port]/data/searchDatasets?search=Bilbao%20Calendar"

-H "accept: application/json"

 search

9 APPENDIX: Data Aggregation API

9.1 Types of Aggregators

Table 16: Types of available aggregators

Aggregator Description Interpolation

avg Averages the data points Linear Interpolation

count The number of raw data points in the set Zero if missing

dev Calculates the standard deviation Linear Interpolation

ep50r3 Calculates the estimated 50th percentile with the R-3 method * Linear Interpolation

ep50r7 Calculates the estimated 50th percentile with the R-7 method * Linear Interpolation

ep75r3 Calculates the estimated 75th percentile with the R-3 method * Linear Interpolation

ep75r7 Calculates the estimated 75th percentile with the R-7 method * Linear Interpolation

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 85 of 88

ep90r3 Calculates the estimated 90th percentile with the R-3 method * Linear Interpolation

ep90r7 Calculates the estimated 90th percentile with the R-7 method * Linear Interpolation

ep95r3 Calculates the estimated 95th percentile with the R-3 method * Linear Interpolation

ep95r7 Calculates the estimated 95th percentile with the R-7 method * Linear Interpolation

ep99r3 Calculates the estimated 99th percentile with the R-3 method * Linear Interpolation

ep99r7 Calculates the estimated 99th percentile with the R-7 method * Linear Interpolation

ep999r3 Calculates the estimated 999th percentile with the R-3 method
*

Linear Interpolation

ep999r7 Calculates the estimated 999th percentile with the R-7 method
*

Linear Interpolation

first Returns the first data point in the set. Only useful for
downsampling, not aggregation.

Indeterminate

last Returns the last data point in the set. Only useful for
downsampling, not aggregation.

Indeterminate

mimmin Selects the smallest data point Maximum if missing

mimmax Selects the largest data point Minimum if missing

min Selects the smallest data point Linear Interpolation

max Selects the largest data point Linear Interpolation

none Skips group by aggregation of all-time series. Zero if missing

p50 Calculates the 50th percentile Linear Interpolation

p75 Calculates the 75th percentile Linear Interpolation

p90 Calculates the 90th percentile Linear Interpolation

p95 Calculates the 95th percentile Linear Interpolation

p99 Calculates the 99th percentile Linear Interpolation

p999 Calculates the 999th percentile Linear Interpolation

sum Adds the data points together Linear Interpolation

zimsum Adds the data points together Zero if missing

9.2 aggregate (GET)

/aggregate Aggregate data from the database within a specific time range.

Method

GET

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 86 of 88

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented
data types, currently:

• trafficFlowObserved

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

Metric*

(path param)

Text, with the metric. Must be one of the implemented currently:

• intensity

startDate*

(query param)

Date and time (ISO860140 UTC format) from which to get the data.

Mandatory if parameter endDate is not present.

Example: 2021-01-07T00:00:00.000Z

endDate*

(query param)

Date and time (ISO8601 UTC format) until which to get the data.

Mandatory if parameter startDate is not present.

Example: 2021-01-08T22:45:00.000Z

Aggregator*

(query param)

Text, with the type of aggregation function. Must be one of the aggregators described in
9.1 Types of Aggregators.

downsample

(query param)

Text, with the downsample. The format must be a time interval followed by a function of
aggregation.

Example: 1h-sum

tags

(query param)

Text. Tags in JSON format. They are the tags related to the OpenTSDB structure persisted.
For the intensity metric, one tag is the ‘id_ispiral’.

Example: { "id_spiral": "123"} // Filter by spiral called 123.

Example: { "id_spiral": "*"} // Filter by all spirals.

Success response

40 https://www.iso.org/iso-8601-date-and-time-format.html

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 87 of 88

200
If all the input parameters are correct, the method will return this code, and the response
will be a JSON array with the list of the elements requested.

Example:

[

 {

 "metric": "trafficflowobserved.intensity",

 "tags": {

 "id_spiral": "123",

 "city": "bilbao"

 },

 "aggregateTags": [],

 "dps": {

 "1613347200": 24,

 "1613350800": 24,

 "1613354400": 24,

 "1613358000": 60,

 "1613361600": 60,

 "1613365200": 108,

 "1613368800": 72,

 "1613372400": 540,

 "1613376000": 1018,

 "1613379600": 854,

 "1613383200": 785,

 "1613397600": 517,

 "1613401200": 998,

 "1613404800": 1074,

 "1613408400": 1301,

 "1613412000": 1152,

 "1613415600": 1105,

 "1613419200": 906,

 "1613422800": 426,

 "1613426400": 135,

 "1613430000": 57,

 "1613433600": 0

 }

 }

]

Error response

400 Bad Request.

The method makes several checks of the parameters. It checks if the model, city, metric,
startDate, endDate and aggregator parameters are the expected values. It also checks that
at least one of the parameters startDate and endDate is set, and if so, checks that they are
in ISO8601 format.

If any of these checks fail, a Bad Request code will be returned, and will return a JSON
response, with just one field Error, that will contain a description of the error.

Examples:

{

"Error": "No time range specified. 'startDate' and/or 'endDate' must be

indicated."

}

{

"Error": "Invalid value '2021/08/01' for parameter 'startDate'"

}

Sample call

curl -X GET

"http://[server:port]/data/aggregate/trafficFlowObserved/bilbao/intensity?

startDate=2021-02-15T00%3A00%3A00.000Z

&endDate=2021-02-16T00%3A00%3A00.000Z

&aggregator=SUM

&downsample=1h-sum

&tags=%7B%20%20%22id_spiral%22%3A%20%22123%22%7D"–H

"accept: application/json"

DRAFT VERSIO
N

D3.8–Data aggregation and storage module implementation Version 2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 88 of 88

DRAFT VERSIO
N

