D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

URBANITE \O
Supporting the decision-making ir@@ransformation with

the use of disrupti hnologies

D@erable D3.3

Data Harvesting Moddle and Connectors Implementation v2

&

Editor(s): TEC, ENG, FhG
Responsible Partner: Fraunhofer FOKUS
Status-Version: Final V2.0

Date: 30.09.2022
Distribution level (CO, PU): PU

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 1 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Title of Deliverable:

Project Number: GA 870338
Project Title: URBANITE
Data Harvesting Module and Connectors

Implementation v2

Due Date of Delivery to the EC:

30.09.2022

Workpackage responsible for the
Deliverable:

WP3 — Data Management Platform

Editor(s):

TEC, ENG, Fraunhofer FOKUS

Contributor(s):

TEC, ENG

Reviewer(s):

Sergio Campos (TECNA

Approved by: All Partners
y 4
Recommended/mandatory WP4, 5
readers:
@

Abstract:

v

v& deliverable is an update of the deliverable D3.2. It

version of the software
implementation of the data harvesting module
accompanied with the design specification and
documentation. This deliverable is the result of Task 3.1.

presents the final

Keyword List:

Harvester, Data Management, Piveau, Pipe, Software

Licensing information:

This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer

This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu
Page 2 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Document Description

Document Revision History

_ Modification Reason Modified by

v0.1 24/06/2022 Section updates assignment FhG

v0.2 13/09/2022 Content revision and section on TEC, MES
Messina Edge Components

v0.3 29/09/2022 Internal review TEC

v0.4 30/09/2022 Address the comment of internal FhG
review

V1.0 30/09/2022 Final version for submission TE

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 3 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Table of Contents

TaDIE OF CONTENTS .eeenetiiiiiie ettt ettt e st e e st e st e e e st e e s beeesabeesabeesseeesabeeesnneenns 4
[y o T ={ UL <SPSt 5
LISt Of TaBIES...ceeeeieeee e sttt e b e s bt s et e bt e b e sae e sane e 5
Terms and abbreVviatioNns........cou it 6
EXECULIVE SUMIMIAIY 1ttt e e e e s ettt e e e e e s e s b bttt e e e e s e s aaatbeeaeeeesesannssraeaeesennnn 7
A 10} o To [ot o o T OOV UPPTOUPRPPRTOTRINt 8
1.1 About this deliverable ..o 8
1.2 DOCUMENT STFUCTUIE ...ttt 8
1.3 Updates with respect to VErsion Lcoiiiiiiiiiiiis ettt e s e e 8
B [0 Vo1 [T 0 o [T) -1 4 (o PSP
2.1 Functional description........cueieeciee e e
2.11 Fitting into overall URBANITE Architecture.............
2.2 Technical descriptionccoceeeeciieeeeciiee e,
2.2.1 Piveau Pipe Concept......ccocevvveeeeeerrnncnnnneenn.
2.2.2 Components OVerviewccccvveeeeenn.

2.2.2.1 Writing an importer/connector ,

2.2.2.2 Scheduling the data fetchingg.®
2.2.3 Technical specifications..... A ... 20
2.3 Messina Edge ComMpPOonentS gloooiiiiieiiiiiee e ccciree et esre e e esare e s srae e e s saaeee s 20
Delivery and usage [Harvestj &es] ... 24
3.1 Package informationooo e e 24

3.2 Installation instruc
3.3 User Manu
3.3.1 S

3.4 Licensin

35 D011/ o] (o - o IR TSP UST PSPPI 26
4 Delivery and usage [MESSINA Edge COMPONENT]cccoccuieeieiiiiieeeciiee ettt eeteee et e 27
4.1 Package iNformMationoccuiii i 27
4.2 INSTallation INSTIUCTIONS ...cocuiiiiiiiie e st 27
43 USEI IMANUAL ...t st s e e e as 27
LT Oo T [o] (U1 T o 1T P SO PRROUPTRR 29
B REFEIENCES .. e e st 29
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 4 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

List of Figures

FIGURE 1: URBANITE ARCHITECTURE ...ccetttttteeeeeeerereeereenererenesesesesenememerenenen 10
FIGURE 2: URBANITE DATA HARVESTING IMPLEMENTED USING THE PIVEAU PIPELINE CONCEPTccevvverenene 11
FIGURE 3: EXAMPLE OF A PIVEAU PIPE DESCRIPTOR ...ccevtvttereeeereeeeeeeeeeeeeeeeeererereeeeerereeerereneeeseeenenemememenens 12
FIGURE 4. IMPORTER FOR AIR QUALITY DATA IN BILBAO ..cceviiiiiiiiiiiiieiiiiieieteeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenen 18
FIGURE 5: REGISTERING A PIPE HANDLER WITH THE VERT.X EVENTBUS....ccevvttrererereeererererererereeeeeneneeenenenene 18
FIGURE 6: PIPE DESCRIPTOR WITH ACCESSURL c.cevtttetereeerereeeeeeeeeeeeeerereeeeereeerereeereeeeererererenerererenemereremenen 18
FIGURE 7: WEB CLIENT TO DOWNLOAD AIR QUALITY DATA FROM BILBAQO’S AIR QUALITY SERVICEcccevuveenn. 18
FIGURE 8: CREATION OF THE METADATA FOR THE DOWNLOADED DATASET AND DISTRIBUTIONcccevevererenene 19
FIGURE 9: FORWARDING BOTH THE DATA AND THE METADATA TO THE NEXT PROCESS IN THE PIPELINE........... 19
FIGURE 10: TRIGGERING THE HARVESTING PIPELINE EVERY HOURceettiiiiuurirteeeeeeeiinreeeeeeeessnnnneeeeeeeenns 20
FIGURE 11: MESSINA EDGE COMPONENTS AS EXTERNAL DATA PROCESSuevvvrtreeeeeeiinnreeeeeeseesannereeeeeeeanns 21

FIGURE 12: COMPARISON OF DATA RETRIEVAL CONSIDERING AN INTERVAL CQNTAINING 15,000,000

COLLECTION APPROACH BEHAVES SLIGHTLY BETTER WITH UNG

HOWEVER, THE ADVANCED BUCKETING PREVAILS WITH GROUPI
FIGURE 14: COMPARISON OF DATA AGGREGATION CONSIDERING

DAY, MONTH, YEAR). TIME INTERVALS ARE CHOSEN ACC
FIGURE 15: PIVEAU_CLUSTER_CONFIG VARIABLE
FIGURE 16: PIVEAU_SHELL_CONFIG VARIABLE

éﬁ\t of Tables

TABLE 1: STATUS OF HARV IREMENTS FROM D5.1.ccueiiiiiiiiii ettt 9
TABLE 2: COMPONENT OGRS ccevvvnneerernneerrtneererneeerereeesssnaeesssseesssseessssnneessssaeeessssneesssnneens 14
TABLE 32 EXISTING D T i+ e e vvvvvunnneeeeeeentuuunseeeeeetenssnnasesesssesssunsssessesesssunanessesssnsssnnsessssssnsssnnsnns 15
TABLE 4: SCHEDUL OMMANDS ..t aas 25
TABLE 5: SCHEDULER AT ...ttt ettt e e ettt e e s e e e e ettt ee e e e e e e e ea et aeeeeeeaaeasaaaeeeeaeannesanannes 26
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 5 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Terms and abbreviations

API Application Programming Interface

EC European Commission

CcC Creative Commons

csv Comma Separated Values

DCAT Data Catalogue Vocabulary

DCAT-AP DCAT Application Profile

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol Secure
JDBC Java Database Connectivity

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data
VM Java Virtual Machine

MIF/MID Maplnfo Interchange Format

NGSI Next Generation Service Interface
NGSI-LD Next Generation Service Interface Lin
o/D Origin/Destination

POI Point of Interest »

RDW Specific Open Data Portal ofmgtertigm
REST Representational State Tragys

SOAP Simple Object Access M

SPDP Standard for Publj€hing Dynamic Parking Data
URL Uniform Res &tor

XML eXtensible Ap Language

XSD XML Sch ition

Project Title: URBANITE

Page 6 of 29

Contract No. GA 870338
www.urbanite-project.eu

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Executive Summary

This deliverable contains an overview over the software components that are related to the
tasks of data harvesting. This refers to the process of downloading data for further processing,
albeit without making substantial changes to the data itself. While minor adjustments or filtering
is part of this step, thorough data preparation, transformation and curation are covered in
deliverable D3.6. Due to the heterogeneous nature of the data present in the URBANITE context,
the connector modules typically require specific tailoring to the respective methods of access.
As such, the components that have been developed for performing this task are described in
this deliverable.

As shown in deliverable D5.4, the Data Management Platform follows a microservice
architecture. Of course, all components involved in the steps of fetching to storing data and
metadata must integrate into this architecture. In order to achieve this goal, the Piveau Pipe
Concept is employed, a design approach aimed at high flexibility and loose coupling when
orchestrating software services. The Piveau Pipe Concept is covered in detail in this deliverable,
but also applies to the aforementioned components described in D3.6. 3ge key service in this
architecture is a dedicated scheduling component that is responsible ring that data is
fetched in regular intervals. For each existing module described i d&iverable, an overview
along with a description is given. Where applicable, details on @ ration and usage are
provided. Finally, a description is given of the Messina Edge N , used for the collection
and processing of a large amount of context data. This prqfesss performed at the edge.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 7 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities, that are data harvesting, data
preparation/transformation/curation/anonymisation, and data aggregation and storage. The
deliverables D3.2, D3.5, and D3.7, together with their updated versions D3.3, D3.6 and D3.8,
focus on these core features respectively. Due to the interaction between these modules, the
aforementioned deliverables should be understood as a collection of documents related to the
same overarching concept that is the Data Management Platform.

1.1 About this deliverable

Within the Data Management Platform, this deliverable focuses on the data harvesting and the
software components involved in this task, i.e. connectors, importers, and the Scheduler. It
presents the challenges involved in harvesting, the proposed solution, and their
implementation. Also, it features a section that describes the Piveau Pipe concept, an
architecture and software design that is used for implementing all harvesting related
components. Developers can get started by reading the relevant sections orgow to write Piveau
pipe compliant modules. Additionally, a section presents how the cQlle® d processing of a
large amount of context data can be performed at the ,@ €® a distributed and
heterogeneous infrastructure; dedicated management of tim ddita in an optimized way

is also presented. %
1.2 Document structure

rvesting components as well as how
ollowed by a description of the Piveau

Section 2.1 covers the functionalities provided
they fit into the general URBANITE architectu
Pipe concept, which is the overarching desi which the individual harvesting related
components are integrated. These are |jste tion 2.2.2, along with technical specifications
and explanations on how to develgfjconnectors and how to configure the scheduler. The
specific edge time series data magigem®gt techniques used in the Messina pilot are described
in 2.3. Next, section 3 cont nstructions on how to build, configure, and run the
application(s). The docume p with some conclusions and references.

1.3 Updates wi ct to version 1

ocument with respect to version 1 consist of added harvesters, new
esters support, and updates to the functionality of these harvesters.
ftion of the Messina Edge Component was added.

The main update
sources that the§
Additionally, a desc

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 8 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

2 Implementation

2.1 Functional description

The harvesting modules and connectors need to provide a number of functionalities. First and
foremost, they need to implement ways to import (i.e. download) data and metadata from
endpoints on the web. These endpoints can come in all shapes and forms, for example, simple
public REST APIs, restricted SQL dumps, simple file downloads, or geodata streams. All these
different kinds of data and metadata then need to be checked, cleaned and harmonised for
further processing, which is covered in D3.6 [1]. This is achieved by data preparation and
subsequent transformation steps, as well as curation. Once the data and metadata are brought
into a common format (i.e. URBANITE Data Model, which is an extension of FIWARE Smart Data
Model [2]), they need to be stored in dedicated databases (covered in D3.8 [3]).

Additionally, the (meta-)data needs to be downloaded in regular intervals to account for changes
thereof. Managing these intervals is the responsibility of the Scheduler. Unlike the other
components described in this deliverable, it does not download data itselfaQut triggers the other
data importers, which in turn download the data.

In summary, this deliverable, therefore, covers harvesting and @ in®. For completeness'
sake, the exporting component, which is responsible for pushifga®gitra#y data to the applicable
APl endpoints of the data storage, is also featured in this d ra Once harvested, data could
be stored directly through the exporter into the datab sifories if no preparation or data
transformation is necessary, or it can be pushed to t t of the pipeline for data quality
checks and transformations. Note that neither ghe eduler nor exporting component are
shown as dedicated modules in Figure 1.

The functional requirements for harvestinfaagdYcheduling were listed in deliverable D5.1 and a
detailed design was provided in deliyfrable D54 [4]. Table 1 shows a short summary of the
eNgs applicable to the data models and datasets have been

development status. All the requir
of Harvester requirements from D5.1

fulfilled.

Data Harvestinggsfmea& Fulfilled: a variety of data is supported
heterogeneous %
sources
Pagination Fulfilled: §pecific harvesters support pagination where needed, e.g.
the Messina commune harvester.
Data Harvesting | Fulfilled: the pipeline design is flexible and extensible
extensibility
Data Harvesting | Fulfilled: although for the moment, all harvesters use HTTP(S)
supported protocols
Scheduled data | Fulfilled: Cron triggers can be set up for pipelines
fetching
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 9 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

2.1.1 Fitting into overall URBANITE Architecture

In general, the harvesting modules and connectors are part of the backend services of the
URBANITE architecture. They are managed by the scheduling component mentioned in the
previous section. Since all related components follow a microservice approach, they fit well with
the docker-based architecture designed in WP5. As such, they also scale well, which is
considered a key requirement when frequently downloading potentially large amounts of data
and preparing/transforming them. The components that are described in this deliverable are
highlighted in green in the architecture diagram (Figure 1) from deliverable D5.8.

URBANITE UI Virtual SopoLab
Keycloak (Identity Mar)
{Urbanite Forum})

Data Analysis, Simulation and R ndation Platform

Analytical Framework
1 icti Exploratory data Iachine learning Traffic simulation Gul
£ Prediction é Data Clustering o models Ul
{Orange + UUI)

___Data projection
Self Organizing [Reccomendation Engine Policy simulation and val
Regression map 1

Controller
AIRFLOW

Data Management Platform

Data Storag, efrieval

Data Fusion/Aggregation / Al

U Triggered by the ussr

Data preparation

Data transformation Data Harvesting
Triggered by the user Transforming it to the

Data Catalogue
GuUI
(linked in the UUI)

Scheduler

Ul Dpata Curation Sl

] Qusllity cheds Connector 1 Connector n
Client Side
m m Microproxies
Data Anonymization Data source Data source

from the cities form the cities Data source
Additional middleware
Kind of mi 1o harvest , i . and
We could offer the specification for the micropraxies we will provide the

specification for the interfaces

Figure 1: URBANITE Architecture

2.2 Technical description

This section describes the technical details of the implemented software. Data management is
the process of fetching, anonymising, preparing, transforming, storing, organising and
maintaining the data created and collected by an organisation. Harvesting refers to the subset
of steps from the import of data to the export into a data store. In URBANITE, this harvesting
process has been implemented using a pipeline, i.e. a chain of processing components arranged
so that the output of each component is the input of the next. The pipeline has been developed
using the open source solution named Piveau Pipe Concept, which is explained in detail in
section 2.2.1. This is followed by an overview of the components that have been developed thus
farin section 2.2.2. Examples of how to write a compatible connector and how to schedule pipes
are also included.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 10 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

2.2.1 Piveau Pipe Concept

The components involved in the steps from data fetching until storage are orchestrated by the
Piveau Pipe concept [5] outlined in this section. A high-level overview of how components
interact in this processing chain is shown in Figure 2.

Transform Export

Schedule Import Prepare

Convert data Write the
into the transformed

corresponding data into

NGSI model. storage.

\
e

Figure 2: URBANITE data harvesting im tegusing the Piveau Pipeline concept

Launch pipes Download raw Clean data and

depending on data from the perform
their set API of the data quality and/or
schedule. source. sanity checks.

On an architectural level, the Pive
sources and the orchestration
to cohere to the Piveau Pipe,con
common RESTful interface,

allows the collection of data from heterogeneous data
[tit?de of subsequent services. In order for a component
t, it needs to be developed as a web service that exposes a
is'explained in detail in section 2.2.2.1. This means that the

services can be conne eneric fashion to implement specific data processing chains. No
central instance is res or orchestrating the services. This is achieved by so-called pipe
descriptors, a J at contains a definition of components (endpoints, chronological
order, specific co tions) that makeup one processing sequence. Each processing chain is

defined in one of theSe files (see Figure 3).

The Scheduler is the component responsible of managing and launching all the pipelines. To do
so, the Scheduler either reads these files from disk or polls a Git repository to become aware of
which pipes are available. These can then be assigned to a periodic trigger for recurring
execution. When such a trigger fires, a copy of the contents of the according to pipe descriptor
is sent to the first component in line, i.e. the one identified in the segment with segment number
1. During processing, the pipe descriptor is augmented. Data that needs to be passed along the
processing chain is written into a payload field of the next component in line. For smaller
amounts of data, this can happen directly; for larger amounts of data, a pointer to an external
datastore can be used. Figure 3 shows an example of a pipe descriptor for downloading Bilbao
air quality data, transforming it, and writing the transformed data to an instance of the data
storage.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 11 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

hheader": {
"id": "UffT7afa7-2fc3-Uesd-abef-a83ab55b698c",
"name": "bilbao-air-quality"
"title": "Bilbao Air Quality",
"context": "URBANITE",
"transport": "payload",
"yersion": "2.0.0" Segment 1:
?[J)Ody" . q Importer
"segments”: [{
PR == T = L
"name" : "importing-bilbac—air-quality",
"segmenthumber" : 1,
"title" : "Importing Bilbao Air Quality",
"processed": false
¥,

"body“ : {
"endpoint”: {
"address": "http://harvester-bilbaco-air-quality:8080/pipe"
}

1
"config": {
"accessUrl": "https://bilbao.urbanite.esilab.org
"catalogue": "bilbao"

}

1__ ___ __ __ A — ————
TReadeT ™ T{ 1

n " n - — —_ - —

"name : plveaflconsus transforming-js i

segmenthumber”: 2,

"title": "Transforming js",

"processed": false
}J
"body": {

"endpoint”: {
"address": "http://tgans&{emeNMs:8080/pipe" :
} 1
1
1
1
1
1
1
1
1
1
1
1

Meta-

/ information

I
I
I
I
I
I
I
I
I
il

I
I
I
I
|
I
I
I
El

| =

LH!‘"—_—_—_—_—_—_—_—_—_

Transformer

"config": {
"single": true
"scriptType"
I[path n : l}j 5
"params" :

refgitory",
a0-@®r—quality.js",

Segment 3:
Exporter

lage": "es"

P I e

-5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1

"

® "piveau-consus—exporter”,

. enthumber": 3,

1 tle": "Data Catalogue and Storage Exporter",
1 "processed": false

),

. nbodyu: {

1 "endpoint": {

1 "address": "http://exporter:8080/pipe"
1

.

1

1

1

1

1

1

1

1
"config": {
"datastoreUrls”: ["https://bilbac.urbanite.esilab.org/data"],
"model”: "airQualityObserved",
"city": "bilbao"

Figure 3: Example of a Piveau Pipe Descriptor

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 12 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

As can be seen, each segment contains a header with metadata and a body with component-
specific configurations, for example, relevant URLs. As stated earlier, this resembles the pipe’s
descriptor. Whenever the Scheduler triggers a pipe, this descriptor is sent to the first component
in line, in this case, the importing-bilbaoc-air-quality module. Each dataset is
immediately sent to the next component, in this case, the transforming-js module. Once
the datasets have been transformed to the desired output format, in this case, the FIWARE
airQualityObserved SmartData model, the result is sent to the Exporter, an adapter that is
capable of uploading data and metadata to the data storage. The process of how the conversion
of data between import and export is accomplished is explained in detail in deliverable D3.6 [1].

It is important to note that all this happens on a per-dataset basis; that is, the Importer does not
wait for all datasets to download and send the payload in bulk, but each dataset is handled
individually. This ensures flexibility, as no component needs to keep a state or track how much
data has been received. Also, each component can be scaled individually depending on the
respective workloads.

The way this works is that payloads are injected into the descriptor as Wis passed along the
pipeline. The descriptor is, therefore, not a static, immutable object b s over time. This
also makes debugging easier, as the evolution of the payload can bgr e . The Scheduler does
not provide a payload, so the descriptor is sent as is. The ImpQqrt¢ @ ever, creates a copy of
the descriptor for each dataset it downloads and injects saj to this copy. Of course,
each component is also capable of extracting its respectiv . The Transformer works in
the same way; it takes the payload sent by the Impor ro s it, and injects the result as a
payload for the Exporter.

2.2.2 Components overview

The following harvesting related co&nts shown in Table 2 have been developed. Some of
these components are suitable gor theSgontinuous fetching of data in regular intervals. In
contrast, historic data or data so s such as public holidays/calendar data or points of interest
(POI), by nature aren’t pron nt changes and/or updates. For simplicities sake, this kind
of data that can be congi as almost static, has been loaded into the data storage using
connectors develope de but have not been included in the Piveau pipeline. However,
using the file im his could have been accomplished in coherence with the Piveau

pipeline. Table
where available. BeNfes, dump files provided by the cities have been used to complete the
historical data.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 13 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Table 2: Component Overview

[Tyoe |

OpenWeath | Downloads weather data from the OpenWeatherMap provider.

erMap Requires an account with a valid API key.

OpenStreet Downloads data from OpenStreetMap. The query must be configured

Map into the respective pipe descriptor.

File Generic importer for downloading files from URLs. The file is Base64
encoded prior to forwarding. The importer ships with a Python script
that can be used to spin up a simple webserver that serves a file from
local storage over HTTP.

XML Downloads XML documents and extracts data before forwarding.
Optionally, if the file is gzip compressed, it will be uncompressed before
handling the data itself.

Web Web page wrappers to extract information from an unstructured web

wrappers page. They are used to a) harvest the schedule of football matches in
Bilbao and b) the schedule of ferry arrivals and defartures in the Port of
Hesinki.

Bilbao Air Downloads air quality data from Euskadi Qgag a Portal.

Quality

Bilbao Downloads traffic data from Euskadi @ge PPortal.

Importer/ | Traffic Flow
Connector | Helsinki Downloads traffic data in the cit ejinki.

Traffic Flow

Helsinki Downloads traffic flow f the Port of Helsinki.

Harbour

Traffic Flow

Messina Downloadsgfarious data from the Messina Commune Edge Components

Commune lation statistics, bus stops and points of interest. As well

ta like air quality, noise or traffic data.

Amsterdam s data from Amsterdam OIS Portal
Downloads air quality data from Amsterdam

Amsterdam Imports traffic data from the Telraam API. This data includes car, bike

Telraam and pedestrian traffic.

Scheduler Keeps track of existing pipe descriptors and manages triggers. The
former are polled from a Git repository, the latter can be
created/updated/deleted via a REST API. The service exposes a shell
accessible by HTTP or Telnet that allows basic interaction, like viewing
existing pipe descriptors and launching them manually.

Mise Data Storage | Pushes incoming data and metadata to the data storage. Allows the

Exporter specification of multiple storages, which is required for data that is
relevant to multiple environments.

Historic data | Manage the files with historical data (air quality, traffic) provided by the

wrappers cities.

Piveau Pipe Container for storing information encoded in a pipe descriptor. Offers a

Library Model selection of related methods, like (de-) serialising and setting certain

fields.

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu
Page 14 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Piveau Pipe Handles communication between pipe components. Should be used
Connector when implementing pipe compliant services.

Piveau Pipe Is used by the Scheduler for initiating the execution of existing pipes.
Launcher

Table 3: Existing data sets

OpenWeath Weather data from the OpenWeatherMap provider WeatherObserve
erMap including precipitation, relative humidity, temperature, d
wind direction, wind speed and atmospheric pressure.
Source: https://openweathermap.org
Calendar Calendar data for the four cities since 2015. It inclu Calendar
information about the day of the week, whether jti
public holiday or not, a working day or not andfg)
day or not. Due to its complexity, the informgt!
been manually merged from different ’\
https://www.unime.it/it/ateneo/amm ne/calend
ario-accademico,
https://www.calendarioslaboral endario-
laboral-vizcaya-2022.htm
Amsterdam 02, pm10). Source: AirQualityObserv
Air Quality ed
Amsterdam GtfsShape
Ring Ring Source: p ring.nu/
Districts
Amsterdam Amste OriginDestination
Bike O/D eated by WP4 algorithms. Matrix
Amsterdam ary and secondary schools in Amsterdam. Source: PointOfinterest
Schools tps://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/for
at/geojson and
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/for
mat/geojson
Amsterdam Sport offer in Amsterdam. Source: PointOfinterest
Sports https://data.amsterdam.nl/datasets/a6WW _Ay-
oeY dQ/sportaanbieders-in-amsterdam/
Amsterdam Data from the Telraam Traffic platform. Telraam devices | TrafficFlowObser
Telraam count road users passing in front of them. Traffic modes ved
(heavy vehicles, cars, two-wheelers, pedestrians). Source:
https://telraam-api.net/
Amsterdam Tram and metro stations in Amsterdam. Source: TransportStation
Transport https://data.amsterdam.nl/datasets/zoek/
Stations
Bilbao Air Air quality data (no, no2, nox, pm10 and so02) in Bilbao AirQualityObserv
Quality since 2019. Source: ed

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu

Page 15 of 29

https://openweathermap.org/
https://www.unime.it/it/ateneo/amministrazione/calendario-accademico
https://www.unime.it/it/ateneo/amministrazione/calendario-accademico
https://www.calendarioslaborales.com/calendario-laboral-vizcaya-2022.htm
https://www.calendarioslaborales.com/calendario-laboral-vizcaya-2022.htm
https://api.luchtmeetnet.nl/open_api
https://ring-ring.nu/
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/format/geojson
https://data.amsterdam.nl/datasets/a6WW_Ay-oeY_dQ/sportaanbieders-in-amsterdam/
https://data.amsterdam.nl/datasets/a6WW_Ay-oeY_dQ/sportaanbieders-in-amsterdam/
https://telraam-api.net/
https://data.amsterdam.nl/datasets/zoek/

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

https://www.ingurumena.ejgv.euskadi.eus/aal7aCalidad

AireWar/estacion/geojson

Bilbao Traffic status in Bilbao since 2017. Source: TrafficFlowObser
Traffic Flow https://www.geobilbao.eus/geobilbao/Main ved
Bilbao Schedule of matches from the Athletic Bilbao Team for Event
Football seasons from 2014-2015 until 2021-2022.
Matches Source: https://www.livefutbol.com/equipos/athletic-
bilbao/
Bilbao Bikes Bike rental’s locations. Source: PointOfinterest
https://api.citybik.es/v2/networks/bilbon-bizi nd
TransportStation
Bilbao Bilbao districts. GtfsShape
Districts Source: data provided by the city
Bilbao Bike OD matrices based on bike trips data. OriginDestination
OD matrix Source: created by WP4 algorith Matrix
Bilbao Wifi Areas that define the Wi-Fi GtfsShape
Zones Source: data provided by
Bilbao Wifi OD Matrices for all trgyel ased on Wi-Fi data. OriginDestination
0o/D Source: created by WP ithms. Matrix
Bilbao Bike Itineraries (s and end location) followed by TouristTrip
Trips public bikg€'in Bilbao?Source: provided by the city from
the Bilbaob®service.
Helsinki Bike f the bike stations in Helsinki. Source: TransportStation
Stations i.citybik.es/v2/networks/citybikes-helsinki
Helsinki Bike el®nki bike trips (only start and end location) from TouristTrip
Trips 17-2021:
2017 ->May to October
2018 -2019 -> April to October
2020 --> March to October
2021 -> April to October
Source: data provided by the city in files.
Helsinki Traffic Flow in the city of Helsinki since 2019. Source: TrafficFlowObser
Traffic https://lamapi.azurewebsites.net/api/Public ved
Helsinki Traffic Flow from ferries in the Port of Helsinki. It includes | TrafficFlowObser
Harbour heavy traffic (lorry) and car traffic. Source: ved
Traffic https://lamapi.azurewebsites.net/api/Public
Hensinki Schedule of ferry arrivals and departures in the Port of Event
Ferries Helsinki since 8" November 2021. Source:

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu

Page 16 of 29

https://www.ingurumena.ejgv.euskadi.eus/aa17aCalidadAireWar/estacion/geojson
https://www.ingurumena.ejgv.euskadi.eus/aa17aCalidadAireWar/estacion/geojson
https://www.geobilbao.eus/geobilbao/Main
https://www.livefutbol.com/equipos/athletic-bilbao/
https://www.livefutbol.com/equipos/athletic-bilbao/
https://api.citybik.es/v2/networks/bilbon-bizi
https://api.citybik.es/v2/networks/citybikes-helsinki
https://lamapi.azurewebsites.net/api/Public
https://lamapi.azurewebsites.net/api/Public

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

https://www.portofhelsinki.fi/en/passengers/arrivals-

and-departures
Messina GtfsShapes of Messina Districts. Source: https://urbanite- | GtfsShape
Districts nodel.comune.messina.it/
Messina Bus Collection of bus and tram stops. Source: TransportStation
and Tram https://urbanite-nodel.comune.messina.it/
Stops
Messina Collection of Points of Interest. Source: https://urbanite- | PointOfinterest
POls nodel.comune.messina.it/
Messina Air Messina Air Quality Data (no, no2, pm10, c6h6, co). irQualityObserv
Quality Source: https://urbanite-nodel.comune.messi ed
Messina Collection of cameras in Messina. Source: PointOfinterest
Cameras https://urbanite-nodel.comune.messi
Messina Noise pollution measurements. NoiseLevelObserv
Noise nodel.comune.messina.it/ ed
pollution
Messina Electromagnetic nois easurements. Source: ElectroMagnetic
Electromagn https://urbanite-nodel ne.messina.it/ Observed
etic Noise
Messina Messina tr flow observations. Source: TrafficFlowObser
Vehicle : -nodel.comune.messina.it/ ved
Counts
Messina istics about Messina population. Source: PopulationObser
Population tt®s://urbanite-nodel.comune.messina.it/ ved

2.2.2.1 Writing an importer/connector

In this section, we provide a detailed explanation of how to create an importer/connector to
easily integrate it into the pipeline. The connector or importer in segment 1 will download the
data, make a first validation of it, create the necessary metadata and redirect to the next process
in the pipeline. Harvesting related components are based on Vert.X! framework. Therefore, in
order to be integrable into the pipeline, the connector/importer should be an instance of the

Verticle class.

! https://vertx.io/

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu

Page 17 of 29

https://www.portofhelsinki.fi/en/passengers/arrivals-and-departures
https://www.portofhelsinki.fi/en/passengers/arrivals-and-departures
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

public class ImportingBilbacAirQualityVerticle extends AbstractVerticle

Figure 4. Importer for air quality data in Bilbao

When this Verticle is launched for the first time, the handler for processing pipe messages is
registered with the eventbus. The MainVerticle, which is responsible for spawning the Pipe API
and content-negotiation, sends incoming requests along the eventbus. This is then consumed
by the aforementioned handler. This is shown in Figure 5.

@Override
public void start(Promise<Void> startPromise) {
vertx.eventBus().consumer("bilbao-importer"”, message -> {
PipeContext pipeContext = message.body();
pipeContext.log().info("Import started");
accessUrl = pipeContext.getConfig().getString(Url");

})s \O
Figure 5: Registering a Pipe Igfwith®the Vert.X Eventbus

In the example in Figure 5, access¶meter included in the pipe descriptor, as shown
in Figure 6.

"config": {
"accessUrl": "http
"catalogue": " i

}

anite.esilab.org:8443/data",

Figure 6: Pipe descriptor with accessUrl

Thanks to the pipe descriptor, the same importer can be used to harvest different data sources
without modifying the component’s code. To download the data, a web client can be used if the
data source is available through HTTP, e.g. in the case of a web service APl or a URL.

webClient.getAbs("https://bilbao.urbanite.esilab.org/data")
.addQueryParam{ "R@1HNoPortal"”, "true")
.addQueryParam{"tipoICa", "2")
.addQueryParam{"idContaminante"”, "8")
.putHeader({"Accept”, "application/json™)
.expect(ResponsePredicate.SC OK)
.send()

Figure 7: Web client to download air quality data from Bilbao’s air quality service

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 18 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Once the data is downloaded, not all of it is forwarded to the next process in the pipeline. For
example, the Basque Country’s air quality service (see Figure 8) returns data about all the
meteorological stations in the entire province. However, in URBANITE, we are only interested in
the information coming from the stations in the municipality of Bilbao. The rest of the data is
discarded. In addition, the metadata is created for the downloaded data and forwarded in the
metadata field. The helper classes for constructing DCAT-AP metadata are included in the
Piveau libraries.

DCATAPGraph dcatapGraph = new DCATAPGraph();

Dataset dataset = dcatapGraph.createDataset("sample_dataset")
.setTitle("Bilbac Air Quality")
.setDescription("Air Quality information for Bilbao")
-addKeyword({"Bilbao")
.addKeyword{"Air Quality")
.setIssued({Instant.now())
.setModified({Instant.now())
.sethccessRights({"public")

dataset.createDistribution("sample distribution™)
.sethAccessURL({accessUrl + "/getTDataRange/air
.setFormat{"http://publications.europa.euy
.setlicense({"http://publications.europsg,
.setDescription("air Quality informa
.setTitle("Bilbao Air Quality)
Lbuild();

cefauthority/licence/CC_BY")
Bilbao™)

Figure 8: Creation of the m & for the downloaded dataset and distribution
e

Finally, both the data and meta forwarded to the next process in the pipeline (see Figure
9). For all interactions betw iveau Pipe services, the pipe-connector? library should
be used. It provides an ab from the inner workings and communication protocols

implemented. It aIso incoming pipe descriptors and extracts the applicable segment
info for a given s

er
prlvate void forwar taset(JsonObJect dataset, PipeContext pipeContext, String identifier) {

ObjectNode dataInfo = new ObjectMapper().createObjectNode()
.put("identifier"”, identifier)
.put(“catalogue"”, pipeContext.getConfig().getString("catalogue"”));

pipeContext.log().info("Importer result:\n{}", dataset.encodePrettily());
pipeContext.setResult(dataset.encodePrettily(), "application/json", dataInfo).forward();

Figure 9: Forwarding both the data and the metadata to the next process in the pipeline.

2 https://github.com/piveau-data/piveau-pipe-connector

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 19 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

2.2.2.2 Scheduling the data fetching

Depending on the data source, the update frequency changes. For example, traffic flow data is
updated every 5 minutes whereas air quality data is updated every hour. For this reason, each
pipeline needs to be triggered with a different frequency. As explained before, the Scheduler is
the component responsible of managing these triggers. To configure the Scheduler, triggers can
be set using the provided REST API. It supports one-time (“immediate”) and Cron3 triggers. For
example, to trigger the harvesting pipeline for the air quality data every hour we would send the
request shown in Figure 10 via PUT method to triggers/bilbaoc-air-quality. Note the
pipelId inthe payload (bilbao-air-quality).

2.2.3 Technical specifications

[
{
"id": "BilbaoAirQuality",
"status": "enabled",
"cron": "0 0 0/1 ? * * xw,
"next": "2021-07-23T10:45:00z2"
}
]
Figure 10: Triggering the harvesting pipeline e @

All harvesting related components are written in Java andgfré ba%gd on the Vert.X* framework
developed by the Eclipse Foundation. Vert.X pro a supports an asynchronous
programming paradigm which aims to improve pe c€ and responsiveness by ensuring
that a thread is never blocked by long-running taqs. basis of this is the Netty® project.

The pipe functionality (parsing and manipulati pe descriptor) is provided by the Piveau

Pipe Model library. The common endpoi component exposes is implemented by the
Piveau Pipe Connector library. &

All pipe components except the dul®ware stateless. As such, only the Scheduler requires a
database and for this purpose, s on the embedded version of the Open-Source relational

database H25, accessible via component uses the database to store pipeline triggers.

With all services bein d, the software stack runs on any machine that is supported by
the JVM. Dependipe e number of instances running and the kind of data that is processed,
a sufficient amo emory should be available.

2.3 Messina Edge Components

In order to be able to efficiently collect a huge and heterogeneous amount of information and
data by acquiring real-time vehicle locations, weather data, air quality measurements or GPS
position of electric vehicles in the city centre, innovative techniques, trying to improve existing
methods, have been explored. The decision to attempt to improve some known data acquisition
techniques together with technologies already designed for this purpose, such as time-series
databases, emerged from real problems encountered directly in the field.

3 http://www.nncron.ru/help/EN/working/cron-format.htm
4 https://vertx.io/

5> https://netty.io/

6 https://h2database.com

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 20 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

The schema below presents the role that the Messina Edge components represent into the
general URBANITE architecture. They are considered as connectors to external data processing
them to be harvested by the system.

st

L Messina Edge Components

MESSINA

DATA STORAGE

DATA ¢ DATA
PROCESSOR IMPORTER

A
|
External
data
sources

Figure 11: Messina Edge components as external data

Some of the critical issues encountered were the size of the data % bePstored (especially in
the case of timeseries data) and the difficulty of existing tec agiesgfto return the results of
guite complex queries in an agreeable time frame. The exi m, in some cases, could not

respond without crashing, probably also due to proble thg scalability of the system itself.
The main scope of processing this informationis to p ot administrators and citizens with
real-time information or digital services that can jffipr their quality of life.

The large amount of data exchanged betw %equisition tools (such as sensors and
cameras) and databases, but also the n o\make this information immediately available,
makes central the creation of increasjgfgly efficient data models, both in the process of writing

data into the selected database afid W the reading phase, when the access time by users
becomes extremely important tgfingease%he quality of the service.

The study focused on the o
MongoDB. The organis
the data relating to
the sensors, hen

n of data acquisition and their query in the case of using
e collected data and their structure is fundamental. In general,
logical field are series of historical measurements acquired by
rence to time-series data.

The approach use e one related to the bucket structure, generally used in the field of time
series data and document-oriented databases. The proposed solution can be used in the context
of urban mobility, but it has a general value.

Here, with the used “buckets approach”, documents are grouped with predetermined criteria
into container documents. Consequently, the single collection contains buckets that consist of
an array of documents, which represent the real measures, as well as contain the metadata that
remains constant over time. The bucket length can be fixed if there is a set maximum number
of measurements, or dynamic if the insertion of a measurement within it depends on other
factors.

This approach exploits as much as possible the use of buckets, a well-known pattern that is used
to improve the management of time series data, using methodologies in order to optimise
performances and functionalities to the maximum.

It is based on five main pillars:

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 21 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

1) Bucket

2) Total count

3) Aggregation

4) Range pagination
5) Query pipeline

The most convenient bucket structure for the purposes is a dynamic one, in which a single
bucket contains the measurements coming from a specific data source in a given time interval
because this will allow us to use specific algorithms for data retrieval.

Further information about methodologies and implementation are available in the published
paper “Time Series Data Management Optimized for Smart City Policy Decision” (doi:
10.1109/CCGrid54584.2022.00068), in which there is also a comparison between the proposed
solution and the native time series data management features offered By the new version of

MongoDB.
@ Time series collection @ Advanced buc tinO
20000 + %
10000 + ;
8000 +
2 6000 4
v
=
[=
8 4000 -+
’ &
2000 +
—

§

U=

6‘0000_

?0000 Al

$
&

5000 4
“003

-?3000)
-90000 |

Pagesize

Figure 12: Comp .% data retrieval considering an interval containing 15,000,000 measurements:
the Time series co lon approach improves by increasing the dimension of the page, through the
Advanced Bucketing, the behaviour remains more or less constant

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 22 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

I Time series collection [l| Advanced Bucketing

04
. E &8 ¥ e E E E E E
g
g o2
Ann 1
Minute Hour Da

approach behaves slightly better with ungrouped and grouped by id dataj the Advanced
Bucketing prevails with grouping by timestarg

Figure 13: Comparison between different data formats in the response result. g/me series collection

150
R e - g

g
Q
£
w

50

0

nth Year
Figure 14: Com ata aggregation considering different granularities (minute, hour, day,
). Time intervals are chosen according to the specific granularity.
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 23 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

3 Delivery and usage [Harvesting modules]

3.1 Package information

All components are Java applications that are built using Maven’. As such they cohere to the
default standardized folder structure for source files
(/src/main/java/io/piveau/ {componentName}) and resource files
(/src/main/resources). The latter contains files like the OpenAPI specification
(webroot/openapi.yaml) when applicable and logging configuration (Logback. xml).

3.2 Installation instructions

In order to integrate well into the URBANITE platform, all components are available as Docker
images. However, before building the Docker images, the corresponding JAR file needs to be
created. A JAR file is an executable that runs on the JVM. The harvesting components rely on a
build tool called Maven for dependency management and generation of JARs. As such, the
deployment of a service can be achieved using the three comman Note that curly
brackets indicate that applicable values need to be substituted.

$> mvn clean package

$> docker build -t urbanite/{component—name%\

$> docker run -p {PORT}:8080 urbanite/{ nt-name}
Depending on the respective component, a if copfiguration may need to be applied, for
example, an APl key. This can be achieved usin§ em§gbnment variables, which can be passed to

Docker containers like so:

$> docker run -e {ENV_VAR} ue} urbanite/{component-name}

3.3 User Manual 2 ?*

In general, each com rovides a human readable form of its OpenAPI specification at
{hostname:p 1Ndex.html. corresponding file is stored at
src/main/res s/webroot/openapi.yaml. However, this does not apply to
those components tifat spawn their endpoints based on a library. This is specifically the case for
all pipe components that rely on the Piveau Pipe Connector library. These expose the common
endpoint at {hostname:port}/pipe, which accepts compliant pipe descriptors via the
HTTP POST method.

Aside from this, most of the components require very little configuration and work out of the
box. The specific environment variables that need to be set for each service are listed in the
respective README . md file in the root directory.

7 https://maven.apache.org/

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 24 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

3.3.1 Scheduler

A special case however is the Scheduler, which requires a little more setup and also exposes
more endpoints than the other pipe components. As described previously, the Scheduler serves
two main purposes: keeping track of existing pipe descriptors and managing triggers for these
pipes. In order to fulfil the former task, the pipe descriptors can either be copied to the
src/main/resources/pipes directory before compilation. Alternatively, the descriptors
can be managed using a GitLab repository. For this, a so-called cluster-config akin to the snippet
shown in Figure 15 must be set.

PIVEAU CLUSTER CONFIG:

{

"pipeRepositories": {
"system": {
"uri":

"https://gitlab.com/urbanite/harvesting-
pipes.git",

"username": "gitlab-user",
"token": "gitlab-token”,
"branch": "master"
}
}
}
Figure 15: PIVEAU_CLUSTER_C ariyble

The Scheduler frequently polls this repository, thegeb
at runtime. In order to monitor pipe descri
contents or launch them manually the compo
Telnet. To enable this, a shell config like t in

ecting changes to the pipe descriptors
gi%ered with the Scheduler, view their
ses a shell, accessible either via HTTP or
igure 16 must be set.

This exposes HTTP access at {host&8085/shell .html and Telnet access on port 5000.
own

The available shell commands arg/Sh Table 4.
PIVEAU i ONFIG:

{
|

‘host": "0.0.0.0",
"port": 8085
, "telnet": {

"host": "0.0.0.0",
"port": 5000

Figure 16: PIVEAU_SHELL CONFIG variable

Table 4: Scheduler Shell Commands

pipes List available pipes.

show {pipeld} View contents specific pipe descriptor.
trigger {pipeld} List triggers of specific pipe.

launch {pipeld} Start specific pipe immediately.

Management of triggers is made possible via an exposed RESTful API. The available paths and
corresponding methods are listed in Table 5.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 25 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

Table 5: Scheduler API

Jtriggers GET Get a list of pipe IDs and scheduled triggers.

PUT Bulk update of all triggers.

GET Returns all triggers for the pipe with the specified pipeld.
/triggers/{pipeld} | PUT Create or update triggers for pipe with pipeld.

DELETE Delete previously created triggers.

3.4 Licensing information

Piveau consus is published under Apache 2.0.

The software developed in the project is licensed under Affero General Public License (AGPL)
version 3.

3.5 Download

All source code resides in the GitLab maintained by Tecnalia®. Th i pecific components
(i.e. data source adapters) are grouped in dedicated subgro neric harvesters and

&
?{(&
Q.
QO

8 https://www.gnu.org/licenses/agpl-3.0.en.html
% https://git.code.tecnalia.com/urbanite/public/-/tree/main/data_management_platform/harvester

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 26 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

4 Delivery and usage [MESSINA Edge Component]

4.1 Package information

The Messina Edge Component comprehends different applications which allow to harvest and
import data into a database and expose them via REST-API.

The architecture developed is composed of different parts: the internal GUI (Graphical User
Interface) is realized in React)S; the parts of the Data-Importer and the Data-Processor are
developed using Python and finally, the database is a NoSQL storage: MongoDB.

4.2 Installation instructions

In order to ease the deployment, all components are available as Docker images, for each of
which a Dockerfile to build is provided.

The entire package is managed through a single docker-compose in whichNe services that can
be deployed in the realised edge architecture are defined.

As a result, deployment can be performed by simply typing the o below from within the
folder where the docker-compose.yml file is located: \
$> docker compose up -d
If services need to be publicly exposed, the portsgfiu et appropriately. By default, the ports
binded to the host are: A

- port:8000 (GUI)

- port:8001 (Data-Proce &

&

It is recommended to use t
to have adequate data persi

4.3 User Maan~
1.2.1 Data-Impo Q

In order to import data via the Data-Importer, it is necessary to write a python script for each

es specified in the docker-compose configuration in order

data source to be placed in the following folder within the Data-Importer volume:

- importer/app/importers/<dataset to import>/

The script can be launched manually when needed, or in an automated manner in case the
import needs to be cyclically repeated.

Once the script has been created, it can be executed by simply typing:

- docker exec urbanite-messina-importer python3
/app/importers/<dataset to import>/<script name>.py

To import Static or TimeSeries data, the methods defined in the /app/db/mongo.py module
should be used.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 27 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

1.2.2 Configuration: Data-Processor

The Data-Processor configurations are located within the folder:
- /app/server/conf

There are three kinds of configuration:

1) Data models: the names of collections containing static data must be specified within the
StaticData class in the models.py file. The names of the collections containing TimeSeries data
within the TimeSeriesCollection class.

2) Bucket structure for time-series data: the bucket configuration of the specific collection must
be entered into the collections key, indicating the appropriate values in the bucketconf.json file
(as in the example below):

"rebuildCache": true,

"expandProperties": [true, false],
"matchFields": "path,road,QD",
"availabilityGranularity": "month",
"bucketGranularity": "day",
"bucketDateField": "date",
"bucketDataField": "data",
"bucketDateTimeField": "datetime",
"bucketProperties": ["len", '"roadsS e"],

"dataId": ["path", "road", "oD'4p,

"dataFields": ["JF", "SP", n"syu "FF", HCN"],

"aggregationAvailableO, min

([
7

"max"],

"aggregationDataFie

\ I
",

"groupByDatetime

m_omgpn,_omgyn, mEEn_ neNv],

"bucketElement

"groupResultsByDataField": "datetime",

"entryKey": "roadKey"

}/

"groupById": {

"groupResultsByDataField": "k",

"entryKey": "datetime"

3) Tokens enabled for using the authenticated API: the creation of tokens to access the realised
APl is done within the users.py file by specifying the token, the name and role of the user.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 28 of 29

D3.3 — Data Harvesting Module and Connectors Implementation V2.0 — Final. Date: 30.09.2022

4) Metadata: they are defined in the file /app/server/metadata/metadata.json and,
for each data source static or timeseries, a title, a description, a link, the list of formats, and the
source have to be indicated. Other fields can be added optionally if needed.

5 Conclusions

Overall, this document describes the technical details of the components involved in the
harvesting process. This includes the custom adapters for data sources, both generic and pilot
specific as well as common components like the Scheduler. It is shown how these modules
integrate into the general URBANITE data management platform architecture and the Piveau
Pipe concept. The latter describes a mechanism of loose component coupling by standardising
exposed APls, thereby fostering the reuse of existing services. For developers, the deliverable
contains instructions on how to develop Piveau pipe compliant services.

Additionally, noteworthy components like the Scheduler and the Messina Edge Components are
described in detail with respect to implementation and configuration. A e general rundown

of the other components is also provided. In conclusion, this deliverab he reader to get
an understanding of the technical solution(s) employed for the harvesting of data
sources.

6 References Q@

[1] FhG, TEC and ENG, “Data curation module entation-v2,” 2022.

[2] TEC, C. Messina, ENG, BIL, MLC#ind FhG, “URBANITE Mobility Data Sources Analysis,”
European Commission, 2020.
[3] FhG, TEC and ENG, “Datgaggr&gation and storage module implementation-v2,” 2022.

[4] TEC, FhG, ENG an ‘URBANITE architecture,” 2021.

, B. Dittwald, S. Dutkowski, S. Urbanek and M. Hauswirth, “Piveau: A

Large-Scale Ofngn QPata Management Platform Based on Semantic Web Technologies,”
[6] FhG, TEC and ENG, “Data harvesting module and connectors implementation-v1,” 2021.
[7] FhG, TEC and ENG, “URBANITE data structure and semantic model specification,” 2020.

[8] TEC, FhG, ENG and JSI, “Detailed requirements specification,” 2020.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 29 of 29

