
D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 29

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D3.3

Data Harvesting Module and Connectors Implementation v2

Editor(s): TEC, ENG, FhG

Responsible Partner: Fraunhofer FOKUS

Status-Version: Final V2.0

Date: 30.09.2022

Distribution level (CO, PU): PU

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 29

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable:
Data Harvesting Module and Connectors
Implementation v2

Due Date of Delivery to the EC: 30.09.2022

Workpackage responsible for the
Deliverable:

WP3 – Data Management Platform

Editor(s): TEC, ENG, Fraunhofer FOKUS

Contributor(s): TEC, ENG

Reviewer(s): Sergio Campos (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5

Abstract: This deliverable is an update of the deliverable D3.2. It

presents the final version of the software
implementation of the data harvesting module
accompanied with the design specification and
documentation. This deliverable is the result of Task 3.1.

Keyword List: Harvester, Data Management, Piveau, Pipe, Software

Licensing information: This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 29

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 24/06/2022 Section updates assignment FhG

v0.2 13/09/2022 Content revision and section on
Messina Edge Components

TEC, MES

v0.3 29/09/2022 Internal review TEC

v0.4 30/09/2022 Address the comment of internal
review

FhG

V1.0 30/09/2022 Final version for submission TEC

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 29

Table of Contents

Table of Contents .. 4

List of Figures .. 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

1.3 Updates with respect to version 1 .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall URBANITE Architecture ... 10

2.2 Technical description .. 10

2.2.1 Piveau Pipe Concept .. 11

2.2.2 Components overview .. 13

2.2.2.1 Writing an importer/connector .. 17

2.2.2.2 Scheduling the data fetching ... 20

2.2.3 Technical specifications ... 20

2.3 Messina Edge Components ... 20

3 Delivery and usage [Harvesting modules] ... 24

3.1 Package information ... 24

3.2 Installation instructions ... 24

3.3 User Manual .. 24

3.3.1 Scheduler ... 25

3.4 Licensing information .. 26

3.5 Download .. 26

4 Delivery and usage [MESSINA Edge Component] ... 27

4.1 Package information ... 27

4.2 Installation instructions ... 27

4.3 User Manual .. 27

5 Conclusions ... 29

6 References ... 29

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 29

List of Figures

FIGURE 1: URBANITE ARCHITECTURE .. 10
FIGURE 2: URBANITE DATA HARVESTING IMPLEMENTED USING THE PIVEAU PIPELINE CONCEPT 11
FIGURE 3: EXAMPLE OF A PIVEAU PIPE DESCRIPTOR .. 12
FIGURE 4. IMPORTER FOR AIR QUALITY DATA IN BILBAO ... 18
FIGURE 5: REGISTERING A PIPE HANDLER WITH THE VERT.X EVENTBUS ... 18
FIGURE 6: PIPE DESCRIPTOR WITH ACCESSURL .. 18
FIGURE 7: WEB CLIENT TO DOWNLOAD AIR QUALITY DATA FROM BILBAO’S AIR QUALITY SERVICE 18
FIGURE 8: CREATION OF THE METADATA FOR THE DOWNLOADED DATASET AND DISTRIBUTION 19
FIGURE 9: FORWARDING BOTH THE DATA AND THE METADATA TO THE NEXT PROCESS IN THE PIPELINE. 19
FIGURE 10: TRIGGERING THE HARVESTING PIPELINE EVERY HOUR ... 20
FIGURE 11: MESSINA EDGE COMPONENTS AS EXTERNAL DATA PROCESS ... 21
FIGURE 12: COMPARISON OF DATA RETRIEVAL CONSIDERING AN INTERVAL CONTAINING 15,000,000

MEASUREMENTS: THE TIME SERIES COLLECTION APPROACH IMPROVES BY INCREASING THE DIMENSION OF

THE PAGE, THROUGH THE ADVANCED BUCKETING, THE BEHAVIOUR REMAINS MORE OR LESS CONSTANT . 22
FIGURE 13: COMPARISON BETWEEN DIFFERENT DATA FORMATS IN THE RESPONSE RESULT. THE TIME SERIES

COLLECTION APPROACH BEHAVES SLIGHTLY BETTER WITH UNGROUPED AND GROUPED BY ID DATA,
HOWEVER, THE ADVANCED BUCKETING PREVAILS WITH GROUPING BY TIMESTAMPS. 23

FIGURE 14: COMPARISON OF DATA AGGREGATION CONSIDERING DIFFERENT GRANULARITIES (MINUTE, HOUR,
DAY, MONTH, YEAR). TIME INTERVALS ARE CHOSEN ACCORDING TO THE SPECIFIC GRANULARITY. 23

FIGURE 15: PIVEAU_CLUSTER_CONFIG VARIABLE ... 25
FIGURE 16: PIVEAU_SHELL_CONFIG VARIABLE .. 25

List of Tables

TABLE 1: STATUS OF HARVESTER REQUIREMENTS FROM D5.1 ... 9
TABLE 2: COMPONENT OVERVIEW ... 14
TABLE 3: EXISTING DATA SETS .. 15
TABLE 4: SCHEDULER SHELL COMMANDS .. 25
TABLE 5: SCHEDULER API ... 26

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 29

Terms and abbreviations

API Application Programming Interface

EC European Commission

CC Creative Commons

CSV Comma Separated Values

DCAT Data Catalogue Vocabulary

DCAT-AP DCAT Application Profile

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol Secure

JDBC Java Database Connectivity

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

JVM Java Virtual Machine

MIF/MID MapInfo Interchange Format

NGSI Next Generation Service Interface

NGSI-LD Next Generation Service Interface Linked Data

O/D Origin/Destination

POI Point of Interest

RDW Specific Open Data Portal of Amsterdam

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPDP Standard for Publishing Dynamic Parking Data

URL Uniform Resource Locator

XML eXtensible Markup Language

XSD XML Schema Definition

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 29

Executive Summary

This deliverable contains an overview over the software components that are related to the
tasks of data harvesting. This refers to the process of downloading data for further processing,
albeit without making substantial changes to the data itself. While minor adjustments or filtering
is part of this step, thorough data preparation, transformation and curation are covered in
deliverable D3.6. Due to the heterogeneous nature of the data present in the URBANITE context,
the connector modules typically require specific tailoring to the respective methods of access.
As such, the components that have been developed for performing this task are described in
this deliverable.

As shown in deliverable D5.4, the Data Management Platform follows a microservice
architecture. Of course, all components involved in the steps of fetching to storing data and
metadata must integrate into this architecture. In order to achieve this goal, the Piveau Pipe
Concept is employed, a design approach aimed at high flexibility and loose coupling when
orchestrating software services. The Piveau Pipe Concept is covered in detail in this deliverable,
but also applies to the aforementioned components described in D3.6. One key service in this
architecture is a dedicated scheduling component that is responsible for ensuring that data is
fetched in regular intervals. For each existing module described in this deliverable, an overview
along with a description is given. Where applicable, details on configuration and usage are
provided. Finally, a description is given of the Messina Edge Components, used for the collection
and processing of a large amount of context data. This processing is performed at the edge.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 29

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities, that are data harvesting, data
preparation/transformation/curation/anonymisation, and data aggregation and storage. The
deliverables D3.2, D3.5, and D3.7, together with their updated versions D3.3, D3.6 and D3.8,
focus on these core features respectively. Due to the interaction between these modules, the
aforementioned deliverables should be understood as a collection of documents related to the
same overarching concept that is the Data Management Platform.

1.1 About this deliverable

Within the Data Management Platform, this deliverable focuses on the data harvesting and the
software components involved in this task, i.e. connectors, importers, and the Scheduler. It
presents the challenges involved in harvesting, the proposed solution, and their
implementation. Also, it features a section that describes the Piveau Pipe concept, an
architecture and software design that is used for implementing all harvesting related
components. Developers can get started by reading the relevant sections on how to write Piveau
pipe compliant modules. Additionally, a section presents how the collection and processing of a
large amount of context data can be performed at the edge, over a distributed and
heterogeneous infrastructure; dedicated management of time series data in an optimized way
is also presented.

1.2 Document structure

Section 2.1 covers the functionalities provided by the harvesting components as well as how
they fit into the general URBANITE architecture. This is followed by a description of the Piveau
Pipe concept, which is the overarching design into which the individual harvesting related
components are integrated. These are listed in section 2.2.2, along with technical specifications
and explanations on how to develop connectors and how to configure the scheduler. The
specific edge time series data management techniques used in the Messina pilot are described
in 2.3. Next, section 3 contains instructions on how to build, configure, and run the
application(s). The document wraps up with some conclusions and references.

1.3 Updates with respect to version 1

The main updates of this document with respect to version 1 consist of added harvesters, new
sources that these harvesters support, and updates to the functionality of these harvesters.
Additionally, a description of the Messina Edge Component was added.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 29

2 Implementation

2.1 Functional description

The harvesting modules and connectors need to provide a number of functionalities. First and
foremost, they need to implement ways to import (i.e. download) data and metadata from
endpoints on the web. These endpoints can come in all shapes and forms, for example, simple
public REST APIs, restricted SQL dumps, simple file downloads, or geodata streams. All these
different kinds of data and metadata then need to be checked, cleaned and harmonised for
further processing, which is covered in D3.6 [1]. This is achieved by data preparation and
subsequent transformation steps, as well as curation. Once the data and metadata are brought
into a common format (i.e. URBANITE Data Model, which is an extension of FIWARE Smart Data
Model [2]), they need to be stored in dedicated databases (covered in D3.8 [3]).

Additionally, the (meta-)data needs to be downloaded in regular intervals to account for changes
thereof. Managing these intervals is the responsibility of the Scheduler. Unlike the other
components described in this deliverable, it does not download data itself, but triggers the other
data importers, which in turn download the data.

In summary, this deliverable, therefore, covers harvesting and scheduling. For completeness'
sake, the exporting component, which is responsible for pushing arbitrary data to the applicable
API endpoints of the data storage, is also featured in this deliverable. Once harvested, data could
be stored directly through the exporter into the database repositories if no preparation or data
transformation is necessary, or it can be pushed to the next step of the pipeline for data quality
checks and transformations. Note that neither the Scheduler nor exporting component are
shown as dedicated modules in Figure 1.

The functional requirements for harvesting and scheduling were listed in deliverable D5.1 and a
detailed design was provided in deliverable D5.4 [4]. Table 1 shows a short summary of the
development status. All the requirements applicable to the data models and datasets have been
fulfilled.

Table 1: Status of Harvester requirements from D5.1

Requirements in D5.1 Current Status

Data Harvesting from
heterogeneous data
sources

Fulfilled: a variety of data is supported

Pagination
Fulfilled: specific harvesters support pagination where needed, e.g.
the Messina commune harvester.

Data Harvesting
extensibility

Fulfilled: the pipeline design is flexible and extensible

Data Harvesting
supported protocols

Fulfilled: although for the moment, all harvesters use HTTP(S)

Scheduled data
fetching

Fulfilled: Cron triggers can be set up for pipelines

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 29

2.1.1 Fitting into overall URBANITE Architecture

In general, the harvesting modules and connectors are part of the backend services of the
URBANITE architecture. They are managed by the scheduling component mentioned in the
previous section. Since all related components follow a microservice approach, they fit well with
the docker-based architecture designed in WP5. As such, they also scale well, which is
considered a key requirement when frequently downloading potentially large amounts of data
and preparing/transforming them. The components that are described in this deliverable are
highlighted in green in the architecture diagram (Figure 1) from deliverable D5.8.

Figure 1: URBANITE Architecture

2.2 Technical description

This section describes the technical details of the implemented software. Data management is
the process of fetching, anonymising, preparing, transforming, storing, organising and
maintaining the data created and collected by an organisation. Harvesting refers to the subset
of steps from the import of data to the export into a data store. In URBANITE, this harvesting
process has been implemented using a pipeline, i.e. a chain of processing components arranged
so that the output of each component is the input of the next. The pipeline has been developed
using the open source solution named Piveau Pipe Concept, which is explained in detail in
section 2.2.1. This is followed by an overview of the components that have been developed thus
far in section 2.2.2. Examples of how to write a compatible connector and how to schedule pipes
are also included.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 29

2.2.1 Piveau Pipe Concept

The components involved in the steps from data fetching until storage are orchestrated by the
Piveau Pipe concept [5] outlined in this section. A high-level overview of how components
interact in this processing chain is shown in Figure 2.

Figure 2: URBANITE data harvesting implemented using the Piveau Pipeline concept

On an architectural level, the Piveau Pipe allows the collection of data from heterogeneous data
sources and the orchestration of a multitude of subsequent services. In order for a component
to cohere to the Piveau Pipe concept, it needs to be developed as a web service that exposes a
common RESTful interface, which is explained in detail in section 2.2.2.1. This means that the
services can be connected in a generic fashion to implement specific data processing chains. No
central instance is responsible for orchestrating the services. This is achieved by so-called pipe
descriptors, a JSON file that contains a definition of components (endpoints, chronological
order, specific configurations) that makeup one processing sequence. Each processing chain is
defined in one of these files (see Figure 3).

The Scheduler is the component responsible of managing and launching all the pipelines. To do
so, the Scheduler either reads these files from disk or polls a Git repository to become aware of
which pipes are available. These can then be assigned to a periodic trigger for recurring
execution. When such a trigger fires, a copy of the contents of the according to pipe descriptor
is sent to the first component in line, i.e. the one identified in the segment with segment number
1. During processing, the pipe descriptor is augmented. Data that needs to be passed along the
processing chain is written into a payload field of the next component in line. For smaller
amounts of data, this can happen directly; for larger amounts of data, a pointer to an external
datastore can be used. Figure 3 shows an example of a pipe descriptor for downloading Bilbao
air quality data, transforming it, and writing the transformed data to an instance of the data
storage.

Schedule

Launch pipes
depending on

their set
schedule.

Import

Download raw
data from the
API of the data

source.

Prepare

Clean data and
perform

quality and/or
sanity checks.

Transform

Convert data
into the

corresponding
NGSI model.

Export

Write the
transformed

data into
storage.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 29

Figure 3: Example of a Piveau Pipe Descriptor

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 29

As can be seen, each segment contains a header with metadata and a body with component-
specific configurations, for example, relevant URLs. As stated earlier, this resembles the pipe’s
descriptor. Whenever the Scheduler triggers a pipe, this descriptor is sent to the first component
in line, in this case, the importing-bilbao-air-quality module. Each dataset is
immediately sent to the next component, in this case, the transforming-js module. Once
the datasets have been transformed to the desired output format, in this case, the FIWARE
airQualityObserved SmartData model, the result is sent to the Exporter, an adapter that is
capable of uploading data and metadata to the data storage. The process of how the conversion
of data between import and export is accomplished is explained in detail in deliverable D3.6 [1].

It is important to note that all this happens on a per-dataset basis; that is, the Importer does not
wait for all datasets to download and send the payload in bulk, but each dataset is handled
individually. This ensures flexibility, as no component needs to keep a state or track how much
data has been received. Also, each component can be scaled individually depending on the
respective workloads.

The way this works is that payloads are injected into the descriptor as it is passed along the
pipeline. The descriptor is, therefore, not a static, immutable object but changes over time. This
also makes debugging easier, as the evolution of the payload can be tracked. The Scheduler does
not provide a payload, so the descriptor is sent as is. The Importer, however, creates a copy of
the descriptor for each dataset it downloads and injects said dataset into this copy. Of course,
each component is also capable of extracting its respective payloads. The Transformer works in
the same way; it takes the payload sent by the Importer, processes it, and injects the result as a
payload for the Exporter.

2.2.2 Components overview

The following harvesting related components shown in Table 2 have been developed. Some of
these components are suitable for the continuous fetching of data in regular intervals. In
contrast, historic data or data sources such as public holidays/calendar data or points of interest
(POI), by nature aren’t prone to frequent changes and/or updates. For simplicities sake, this kind
of data that can be considered as almost static, has been loaded into the data storage using
connectors developed in Java code but have not been included in the Piveau pipeline. However,
using the file importer, this could have been accomplished in coherence with the Piveau
pipeline. Table 3 shows all data sets that are currently in the data storage and the source URL
where available. Besides, dump files provided by the cities have been used to complete the
historical data.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 29

Table 2: Component Overview

Type Name Description

Importer/
Connector

OpenWeath
erMap

Downloads weather data from the OpenWeatherMap provider.
Requires an account with a valid API key.

OpenStreet
Map

Downloads data from OpenStreetMap. The query must be configured
into the respective pipe descriptor.

File Generic importer for downloading files from URLs. The file is Base64
encoded prior to forwarding. The importer ships with a Python script
that can be used to spin up a simple webserver that serves a file from
local storage over HTTP.

XML Downloads XML documents and extracts data before forwarding.
Optionally, if the file is gzip compressed, it will be uncompressed before
handling the data itself.

Web
wrappers

Web page wrappers to extract information from an unstructured web
page. They are used to a) harvest the schedule of football matches in
Bilbao and b) the schedule of ferry arrivals and departures in the Port of
Hesinki.

Bilbao Air
Quality

Downloads air quality data from Euskadi Open Data Portal.

Bilbao
Traffic Flow

Downloads traffic data from Euskadi Open Data Portal.

Helsinki
Traffic Flow

Downloads traffic data in the city of Helsinki.

Helsinki
Harbour
Traffic Flow

Downloads traffic flow from ferries in the Port of Helsinki.

Messina
Commune

Downloads various data from the Messina Commune Edge Components
API, like population statistics, bus stops and points of interest. As well
as timeseries data like air quality, noise or traffic data.

Amsterdam
OIS

Downloads data from Amsterdam OIS Portal

Amsterdam
Air Quality

Downloads air quality data from Amsterdam

Amsterdam
Telraam

Imports traffic data from the Telraam API. This data includes car, bike
and pedestrian traffic.

Misc.

Scheduler Keeps track of existing pipe descriptors and manages triggers. The
former are polled from a Git repository, the latter can be
created/updated/deleted via a REST API. The service exposes a shell
accessible by HTTP or Telnet that allows basic interaction, like viewing
existing pipe descriptors and launching them manually.

Data Storage
Exporter

Pushes incoming data and metadata to the data storage. Allows the
specification of multiple storages, which is required for data that is
relevant to multiple environments.

Historic data
wrappers

Manage the files with historical data (air quality, traffic) provided by the
cities.

Library
Piveau Pipe
Model

Container for storing information encoded in a pipe descriptor. Offers a
selection of related methods, like (de-) serialising and setting certain
fields.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 29

Piveau Pipe
Connector

Handles communication between pipe components. Should be used
when implementing pipe compliant services.

Piveau Pipe
Launcher

Is used by the Scheduler for initiating the execution of existing pipes.

Table 3: Existing data sets

Name Adde
d in
Versi
on
1/2

Description Model

OpenWeath
erMap

1 Weather data from the OpenWeatherMap provider
including precipitation, relative humidity, temperature,
wind direction, wind speed and atmospheric pressure.
Source: https://openweathermap.org

WeatherObserve
d

Calendar 1 Calendar data for the four cities since 2015. It includes
information about the day of the week, whether it is a
public holiday or not, a working day or not and a school
day or not. Due to its complexity, the information has
been manually merged from different websites. E.g.
https://www.unime.it/it/ateneo/amministrazione/calend
ario-accademico,
https://www.calendarioslaborales.com/calendario-
laboral-vizcaya-2022.htm

Calendar

Amsterdam
Air Quality

1 Amsterdam Air Quality Data (no, no2, pm10). Source:
https://api.luchtmeetnet.nl/open_api

AirQualityObserv
ed

Amsterdam
Ring Ring
Districts

2 Amsterdam Zones used by Ring-Ring bike data
Source: provided by Ring-Ring https://ring-ring.nu/

GtfsShape

Amsterdam
Bike O/D

2 Amsterdam O/D Matrix from Ring Ring bikes data.
Source: created by WP4 algorithms.

OriginDestination
Matrix

Amsterdam
Schools

2 Primary and secondary schools in Amsterdam. Source:
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/for
mat/geojson and
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/for
mat/geojson

PointOfInterest

Amsterdam
Sports

2 Sport offer in Amsterdam. Source:
https://data.amsterdam.nl/datasets/a6WW_Ay-
oeY_dQ/sportaanbieders-in-amsterdam/

PointOfInterest

Amsterdam
Telraam

2 Data from the Telraam Traffic platform. Telraam devices
count road users passing in front of them. Traffic modes
(heavy vehicles, cars, two-wheelers, pedestrians). Source:
https://telraam-api.net/

TrafficFlowObser
ved

Amsterdam
Transport
Stations

 Tram and metro stations in Amsterdam. Source:
https://data.amsterdam.nl/datasets/zoek/

TransportStation

Bilbao Air
Quality

1 Air quality data (no, no2, nox, pm10 and so2) in Bilbao
since 2019. Source:

AirQualityObserv
ed

DRAFT VERSIO
N

https://openweathermap.org/
https://www.unime.it/it/ateneo/amministrazione/calendario-accademico
https://www.unime.it/it/ateneo/amministrazione/calendario-accademico
https://www.calendarioslaborales.com/calendario-laboral-vizcaya-2022.htm
https://www.calendarioslaborales.com/calendario-laboral-vizcaya-2022.htm
https://api.luchtmeetnet.nl/open_api
https://ring-ring.nu/
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/po/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/format/geojson
https://schoolwijzer.amsterdam.nl/nl/api/v1/lijst/vo/format/geojson
https://data.amsterdam.nl/datasets/a6WW_Ay-oeY_dQ/sportaanbieders-in-amsterdam/
https://data.amsterdam.nl/datasets/a6WW_Ay-oeY_dQ/sportaanbieders-in-amsterdam/
https://telraam-api.net/
https://data.amsterdam.nl/datasets/zoek/

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 29

Name Adde
d in
Versi
on
1/2

Description Model

https://www.ingurumena.ejgv.euskadi.eus/aa17aCalidad
AireWar/estacion/geojson

Bilbao
Traffic Flow

1 Traffic status in Bilbao since 2017. Source:
https://www.geobilbao.eus/geobilbao/Main

TrafficFlowObser
ved

Bilbao
Football
Matches

1 Schedule of matches from the Athletic Bilbao Team for
seasons from 2014-2015 until 2021-2022.
Source: https://www.livefutbol.com/equipos/athletic-
bilbao/

Event

Bilbao Bikes 1 Bike rental’s locations. Source:
https://api.citybik.es/v2/networks/bilbon-bizi

PointOfInterest
and
TransportStation

Bilbao
Districts

1 Bilbao districts.
Source: data provided by the city

GtfsShape

Bilbao Bike
OD matrix

1 OD matrices based on bike trips data.
Source: created by WP4 algorithms.

OriginDestination
Matrix

Bilbao Wifi
Zones

1 Areas that define the Wi-Fi zones in Bilbao.
Source: data provided by the city.

GtfsShape

Bilbao Wifi
O/D

1 OD Matrices for all travel modes based on Wi-Fi data.
Source: created by WP4 algorithms.

OriginDestination
Matrix

Bilbao Bike
Trips

2 Itineraries (only start and end location) followed by
public bikes in Bilbao. Source: provided by the city from
the Bilbaobizi service.

TouristTrip

Helsinki Bike
Stations

1 Location of the bike stations in Helsinki. Source:
https://api.citybik.es/v2/networks/citybikes-helsinki

TransportStation

Helsinki Bike
Trips

2 Helsinki bike trips (only start and end location) from
2017-2021:
2017 ->May to October
2018 -2019 -> April to October
2020 --> March to October
2021 -> April to October

Source: data provided by the city in files.

TouristTrip

Helsinki
Traffic

1 Traffic Flow in the city of Helsinki since 2019. Source:
https://lamapi.azurewebsites.net/api/Public

TrafficFlowObser
ved

Helsinki
Harbour
Traffic

1 Traffic Flow from ferries in the Port of Helsinki. It includes
heavy traffic (lorry) and car traffic. Source:
https://lamapi.azurewebsites.net/api/Public

TrafficFlowObser
ved

Hensinki
Ferries

2 Schedule of ferry arrivals and departures in the Port of
Helsinki since 8th November 2021. Source:

Event

DRAFT VERSIO
N

https://www.ingurumena.ejgv.euskadi.eus/aa17aCalidadAireWar/estacion/geojson
https://www.ingurumena.ejgv.euskadi.eus/aa17aCalidadAireWar/estacion/geojson
https://www.geobilbao.eus/geobilbao/Main
https://www.livefutbol.com/equipos/athletic-bilbao/
https://www.livefutbol.com/equipos/athletic-bilbao/
https://api.citybik.es/v2/networks/bilbon-bizi
https://api.citybik.es/v2/networks/citybikes-helsinki
https://lamapi.azurewebsites.net/api/Public
https://lamapi.azurewebsites.net/api/Public

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 29

Name Adde
d in
Versi
on
1/2

Description Model

https://www.portofhelsinki.fi/en/passengers/arrivals-
and-departures

Messina
Districts

2 GtfsShapes of Messina Districts. Source: https://urbanite-
node1.comune.messina.it/

GtfsShape

Messina Bus
and Tram
Stops

2 Collection of bus and tram stops. Source:
https://urbanite-node1.comune.messina.it/

TransportStation

Messina
POIs

2 Collection of Points of Interest. Source: https://urbanite-
node1.comune.messina.it/

PointOfInterest

Messina Air
Quality

1 Messina Air Quality Data (no, no2, pm10, c6h6, co).
Source: https://urbanite-node1.comune.messina.it/

AirQualityObserv
ed

Messina
Cameras

2 Collection of cameras in Messina. Source:
https://urbanite-node1.comune.messina.it/

PointOfInterest

Messina
Noise
pollution

2 Noise pollution measurements. Source: https://urbanite-
node1.comune.messina.it/

NoiseLevelObserv
ed

Messina
Electromagn
etic Noise

2 Electromagnetic noise pollution measurements. Source:
https://urbanite-node1.comune.messina.it/

ElectroMagnetic
Observed

Messina
Vehicle
Counts

2 Messina traffic flow observations. Source:
https://urbanite-node1.comune.messina.it/

TrafficFlowObser
ved

Messina
Population

2 Statistics about Messina population. Source:
https://urbanite-node1.comune.messina.it/

PopulationObser
ved

2.2.2.1 Writing an importer/connector

In this section, we provide a detailed explanation of how to create an importer/connector to
easily integrate it into the pipeline. The connector or importer in segment 1 will download the
data, make a first validation of it, create the necessary metadata and redirect to the next process
in the pipeline. Harvesting related components are based on Vert.X1 framework. Therefore, in
order to be integrable into the pipeline, the connector/importer should be an instance of the
Verticle class.

1 https://vertx.io/

DRAFT VERSIO
N

https://www.portofhelsinki.fi/en/passengers/arrivals-and-departures
https://www.portofhelsinki.fi/en/passengers/arrivals-and-departures
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/
https://urbanite-node1.comune.messina.it/

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 29

Figure 4. Importer for air quality data in Bilbao

When this Verticle is launched for the first time, the handler for processing pipe messages is
registered with the eventbus. The MainVerticle, which is responsible for spawning the Pipe API
and content-negotiation, sends incoming requests along the eventbus. This is then consumed
by the aforementioned handler. This is shown in Figure 5.

Figure 5: Registering a Pipe handler with the Vert.X Eventbus

In the example in Figure 5, accessUrl is a parameter included in the pipe descriptor, as shown
in Figure 6.

"config": {

 "accessUrl": "https://urbanite.esilab.org:8443/data",

 "catalogue": "helsinki"

}

Figure 6: Pipe descriptor with accessUrl

Thanks to the pipe descriptor, the same importer can be used to harvest different data sources
without modifying the component’s code. To download the data, a web client can be used if the
data source is available through HTTP, e.g. in the case of a web service API or a URL.

Figure 7: Web client to download air quality data from Bilbao’s air quality service

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 29

Once the data is downloaded, not all of it is forwarded to the next process in the pipeline. For
example, the Basque Country’s air quality service (see Figure 8) returns data about all the
meteorological stations in the entire province. However, in URBANITE, we are only interested in
the information coming from the stations in the municipality of Bilbao. The rest of the data is
discarded. In addition, the metadata is created for the downloaded data and forwarded in the
metadata field. The helper classes for constructing DCAT-AP metadata are included in the
Piveau libraries.

Figure 8: Creation of the metadata for the downloaded dataset and distribution

Finally, both the data and metadata are forwarded to the next process in the pipeline (see Figure
9). For all interactions between the Piveau Pipe services, the pipe-connector2 library should
be used. It provides an abstraction from the inner workings and communication protocols
implemented. It also parses the incoming pipe descriptors and extracts the applicable segment
info for a given service.

Figure 9: Forwarding both the data and the metadata to the next process in the pipeline.

2 https://github.com/piveau-data/piveau-pipe-connector

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 29

2.2.2.2 Scheduling the data fetching

Depending on the data source, the update frequency changes. For example, traffic flow data is
updated every 5 minutes whereas air quality data is updated every hour. For this reason, each
pipeline needs to be triggered with a different frequency. As explained before, the Scheduler is
the component responsible of managing these triggers. To configure the Scheduler, triggers can
be set using the provided REST API. It supports one-time (“immediate”) and Cron3 triggers. For
example, to trigger the harvesting pipeline for the air quality data every hour we would send the
request shown in Figure 10 via PUT method to triggers/bilbao-air-quality. Note the
pipeId in the payload (bilbao-air-quality).

2.2.3 Technical specifications

[

 {

 "id": "BilbaoAirQuality",

 "status": "enabled",

 "cron": "0 0 0/1 ? * * *",

 "next": "2021-07-23T10:45:00Z"

 }

]

Figure 10: Triggering the harvesting pipeline every hour

All harvesting related components are written in Java and are based on the Vert.X4 framework
developed by the Eclipse Foundation. Vert.X proposes and supports an asynchronous
programming paradigm which aims to improve performance and responsiveness by ensuring
that a thread is never blocked by long-running tasks. The basis of this is the Netty5 project.

The pipe functionality (parsing and manipulating the pipe descriptor) is provided by the Piveau
Pipe Model library. The common endpoint each component exposes is implemented by the
Piveau Pipe Connector library.

All pipe components except the Scheduler are stateless. As such, only the Scheduler requires a
database and for this purpose, relies on the embedded version of the Open-Source relational
database H26, accessible via JDBC. The component uses the database to store pipeline triggers.

With all services being JVM based, the software stack runs on any machine that is supported by
the JVM. Depending on the number of instances running and the kind of data that is processed,
a sufficient amount of memory should be available.

2.3 Messina Edge Components

In order to be able to efficiently collect a huge and heterogeneous amount of information and
data by acquiring real-time vehicle locations, weather data, air quality measurements or GPS
position of electric vehicles in the city centre, innovative techniques, trying to improve existing
methods, have been explored. The decision to attempt to improve some known data acquisition
techniques together with technologies already designed for this purpose, such as time-series
databases, emerged from real problems encountered directly in the field.

3 http://www.nncron.ru/help/EN/working/cron-format.htm
4 https://vertx.io/
5 https://netty.io/
6 https://h2database.com

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 29

The schema below presents the role that the Messina Edge components represent into the
general URBANITE architecture. They are considered as connectors to external data processing
them to be harvested by the system.

Figure 11: Messina Edge components as external data process

Some of the critical issues encountered were the size of the datasets to be stored (especially in
the case of timeseries data) and the difficulty of existing technologies to return the results of
quite complex queries in an agreeable time frame. The existing system, in some cases, could not
respond without crashing, probably also due to problems with the scalability of the system itself.
The main scope of processing this information is to provide both administrators and citizens with
real-time information or digital services that can improve their quality of life.

The large amount of data exchanged between IoT acquisition tools (such as sensors and
cameras) and databases, but also the need to make this information immediately available,
makes central the creation of increasingly efficient data models, both in the process of writing
data into the selected database and in the reading phase, when the access time by users
becomes extremely important to increase the quality of the service.

The study focused on the optimisation of data acquisition and their query in the case of using
MongoDB. The organisation of the collected data and their structure is fundamental. In general,
the data relating to this technological field are series of historical measurements acquired by
the sensors, hence the reference to time-series data.

The approach used is the one related to the bucket structure, generally used in the field of time
series data and document-oriented databases. The proposed solution can be used in the context
of urban mobility, but it has a general value.

Here, with the used “buckets approach”, documents are grouped with predetermined criteria
into container documents. Consequently, the single collection contains buckets that consist of
an array of documents, which represent the real measures, as well as contain the metadata that
remains constant over time. The bucket length can be fixed if there is a set maximum number
of measurements, or dynamic if the insertion of a measurement within it depends on other
factors.

This approach exploits as much as possible the use of buckets, a well-known pattern that is used
to improve the management of time series data, using methodologies in order to optimise
performances and functionalities to the maximum.

It is based on five main pillars:

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 22 of 29

1) Bucket

2) Total count

3) Aggregation

4) Range pagination

5) Query pipeline

The most convenient bucket structure for the purposes is a dynamic one, in which a single
bucket contains the measurements coming from a specific data source in a given time interval
because this will allow us to use specific algorithms for data retrieval.

Further information about methodologies and implementation are available in the published
paper “Time Series Data Management Optimized for Smart City Policy Decision” (doi:
10.1109/CCGrid54584.2022.00068), in which there is also a comparison between the proposed
solution and the native time series data management features offered by the new version of
MongoDB.

Figure 12: Comparison of data retrieval considering an interval containing 15,000,000 measurements:
the Time series collection approach improves by increasing the dimension of the page, through the

Advanced Bucketing, the behaviour remains more or less constant
DRAFT VERSIO

N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 23 of 29

Figure 13: Comparison between different data formats in the response result. The Time series collection
approach behaves slightly better with ungrouped and grouped by id data, however, the Advanced

Bucketing prevails with grouping by timestamps.

Figure 14: Comparison of data aggregation considering different granularities (minute, hour, day,
month, year). Time intervals are chosen according to the specific granularity.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 24 of 29

3 Delivery and usage [Harvesting modules]

3.1 Package information

All components are Java applications that are built using Maven7. As such they cohere to the
default standardized folder structure for source files
(/src/main/java/io/piveau/{componentName}) and resource files
(/src/main/resources). The latter contains files like the OpenAPI specification
(webroot/openapi.yaml) when applicable and logging configuration (logback.xml).

3.2 Installation instructions

In order to integrate well into the URBANITE platform, all components are available as Docker
images. However, before building the Docker images, the corresponding JAR file needs to be
created. A JAR file is an executable that runs on the JVM. The harvesting components rely on a
build tool called Maven for dependency management and generation of the JARs. As such, the
deployment of a service can be achieved using the three commands below. Note that curly
brackets indicate that applicable values need to be substituted.

$> mvn clean package

$> docker build –t urbanite/{component-name} .

$> docker run –p {PORT}:8080 urbanite/{component-name}

Depending on the respective component, a certain configuration may need to be applied, for
example, an API key. This can be achieved using environment variables, which can be passed to
Docker containers like so:

$> docker run –e {ENV_VAR}={value} urbanite/{component-name}

3.3 User Manual

In general, each component provides a human-readable form of its OpenAPI specification at
{hostname:port}/index.html. The corresponding file is stored at
src/main/resources/webroot/openapi.yaml. However, this does not apply to

those components that spawn their endpoints based on a library. This is specifically the case for
all pipe components that rely on the Piveau Pipe Connector library. These expose the common
endpoint at {hostname:port}/pipe, which accepts compliant pipe descriptors via the
HTTP POST method.

Aside from this, most of the components require very little configuration and work out of the
box. The specific environment variables that need to be set for each service are listed in the
respective README.md file in the root directory.

7 https://maven.apache.org/

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 25 of 29

3.3.1 Scheduler

A special case however is the Scheduler, which requires a little more setup and also exposes
more endpoints than the other pipe components. As described previously, the Scheduler serves
two main purposes: keeping track of existing pipe descriptors and managing triggers for these
pipes. In order to fulfil the former task, the pipe descriptors can either be copied to the
src/main/resources/pipes directory before compilation. Alternatively, the descriptors
can be managed using a GitLab repository. For this, a so-called cluster-config akin to the snippet
shown in Figure 15 must be set.

PIVEAU_CLUSTER_CONFIG:

{

 "pipeRepositories": {

 "system": {

 "uri":

"https://gitlab.com/urbanite/harvesting-

pipes.git",

 "username": "gitlab-user",

 "token": "gitlab-token”,

 "branch": "master"

 }

 }

}

Figure 15: PIVEAU_CLUSTER_CONFIG variable

The Scheduler frequently polls this repository, thereby detecting changes to the pipe descriptors
at runtime. In order to monitor pipe descriptors registered with the Scheduler, view their
contents or launch them manually the component exposes a shell, accessible either via HTTP or
Telnet. To enable this, a shell config like the one in Figure 16 must be set.

This exposes HTTP access at {hostname}:8085/shell.html and Telnet access on port 5000.
The available shell commands are shown in Table 4.

PIVEAU_SHELL_CONFIG:

{

 "http": {

 "host": "0.0.0.0",

 "port": 8085

 }, "telnet": {

 "host": "0.0.0.0",

 "port": 5000

 }

}

Figure 16: PIVEAU_SHELL_CONFIG variable

Table 4: Scheduler Shell Commands

Command Description

pipes List available pipes.

show {pipeId} View contents specific pipe descriptor.

trigger {pipeId} List triggers of specific pipe.

launch {pipeId} Start specific pipe immediately.

Management of triggers is made possible via an exposed RESTful API. The available paths and
corresponding methods are listed in Table 5.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 26 of 29

Table 5: Scheduler API

Path Method Description

/triggers
GET Get a list of pipe IDs and scheduled triggers.

PUT Bulk update of all triggers.

/triggers/{pipeId}

GET Returns all triggers for the pipe with the specified pipeId.

PUT Create or update triggers for pipe with pipeId.

DELETE Delete previously created triggers.

3.4 Licensing information

Piveau consus is published under Apache 2.0.

The software developed in the project is licensed under Affero General Public License (AGPL)
version 38.

3.5 Download

All source code resides in the GitLab maintained by Tecnalia9. There, pilot specific components
(i.e. data source adapters) are grouped in dedicated subgroups. Generic harvesters and
components resign in the root.

8 https://www.gnu.org/licenses/agpl-3.0.en.html
9 https://git.code.tecnalia.com/urbanite/public/-/tree/main/data_management_platform/harvester

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 27 of 29

4 Delivery and usage [MESSINA Edge Component]

4.1 Package information

The Messina Edge Component comprehends different applications which allow to harvest and

import data into a database and expose them via REST-API.

The architecture developed is composed of different parts: the internal GUI (Graphical User

Interface) is realized in ReactJS; the parts of the Data-Importer and the Data-Processor are

developed using Python and finally, the database is a NoSQL storage: MongoDB.

4.2 Installation instructions

In order to ease the deployment, all components are available as Docker images, for each of

which a Dockerfile to build is provided.

The entire package is managed through a single docker-compose in which the services that can

be deployed in the realised edge architecture are defined.

As a result, deployment can be performed by simply typing the command below from within the

folder where the docker-compose.yml file is located:

$> docker compose up -d

If services need to be publicly exposed, the ports must be set appropriately. By default, the ports

binded to the host are:

 - port:8000 (GUI)

 - port:8001 (Data-Processor)

It is recommended to use the volumes specified in the docker-compose configuration in order
to have adequate data persistence.

4.3 User Manual

1.2.1 Data-Importer

In order to import data via the Data-Importer, it is necessary to write a python script for each

data source to be placed in the following folder within the Data-Importer volume:

- importer/app/importers/<dataset_to_import>/

The script can be launched manually when needed, or in an automated manner in case the

import needs to be cyclically repeated.

Once the script has been created, it can be executed by simply typing:

 - docker exec urbanite-messina-importer python3

/app/importers/<dataset_to_import>/<script_name>.py

To import Static or TimeSeries data, the methods defined in the /app/db/mongo.py module

should be used.

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 28 of 29

1.2.2 Configuration: Data-Processor

The Data-Processor configurations are located within the folder:

- /app/server/conf

There are three kinds of configuration:

1) Data models: the names of collections containing static data must be specified within the

StaticData class in the models.py file. The names of the collections containing TimeSeries data

within the TimeSeriesCollection class.

2) Bucket structure for time-series data: the bucket configuration of the specific collection must

be entered into the collections key, indicating the appropriate values in the bucketconf.json file

(as in the example below):

3) Tokens enabled for using the authenticated API: the creation of tokens to access the realised

API is done within the users.py file by specifying the token, the name and role of the user.

"rebuildCache": true,

"expandProperties": [true, false],

"matchFields": "path,road,QD",

"availabilityGranularity": "month",

"bucketGranularity": "day",

"bucketDateField": "date",

"bucketDataField": "data",

"bucketDateTimeField": "datetime",

"bucketProperties": ["len", "roadShape"],

"dataId": ["path", "road", "QD"],

"dataFields": ["JF", "SP", "SU", "FF", "CN"],

"aggregationAvailableOps": ["avg", "min", "max"],

"aggregationDataFields": ["JF", "SP", "SU", "FF", "CN"],

"bucketElementsName": "roads",

"groupByDatetime": {

 "groupResultsByDataField": "datetime",

 "entryKey": "roadKey"

},

"groupById": {

 "groupResultsByDataField": "k",

 "entryKey": "datetime"

}

DRAFT VERSIO
N

D3.3 – Data Harvesting Module and Connectors Implementation V2.0 – Final. Date: 30.09.2022

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 29 of 29

4) Metadata: they are defined in the file /app/server/metadata/metadata.json and,

for each data source static or timeseries, a title, a description, a link, the list of formats, and the

source have to be indicated. Other fields can be added optionally if needed.

5 Conclusions

Overall, this document describes the technical details of the components involved in the
harvesting process. This includes the custom adapters for data sources, both generic and pilot
specific as well as common components like the Scheduler. It is shown how these modules
integrate into the general URBANITE data management platform architecture and the Piveau
Pipe concept. The latter describes a mechanism of loose component coupling by standardising
exposed APIs, thereby fostering the reuse of existing services. For developers, the deliverable
contains instructions on how to develop Piveau pipe compliant services.

Additionally, noteworthy components like the Scheduler and the Messina Edge Components are
described in detail with respect to implementation and configuration. A more general rundown
of the other components is also provided. In conclusion, this deliverable allows the reader to get
an understanding of the technical solution(s) employed for the continuous harvesting of data
sources.

6 References

[1] FhG, TEC and ENG, “Data curation module implementation-v2,” 2022.

[2] TEC, C. Messina, ENG, BIL, MLC and FhG, “URBANITE Mobility Data Sources Analysis,”
European Commission, 2020.

[3] FhG, TEC and ENG, “Data aggregation and storage module implementation-v2,” 2022.

[4] TEC, FhG, ENG and JSI, “URBANITE architecture,” 2021.

[5] F. Kirstein, K. Stefanidis, B. Dittwald, S. Dutkowski, S. Urbanek and M. Hauswirth, “Piveau: A
Large-Scale Open Data Management Platform Based on Semantic Web Technologies,”
2020.

[6] FhG, TEC and ENG, “Data harvesting module and connectors implementation-v1,” 2021.

[7] FhG, TEC and ENG, “URBANITE data structure and semantic model specification,” 2020.

[8] TEC, FhG, ENG and JSI, “Detailed requirements specification,” 2020.

DRAFT VERSIO
N

