D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

URBANITE \O
Supporting the decision-making ir@@ransformation with

the use of disrupti hnologies

D@erable D3.2

Data Harvesting Moddle and Connectors Implementation v1

&

Editor(s): TEC, ENG, FhG
Responsible Partner: Fraunhofer FOKUS
Status-Version: Final —v1.0

Date: 30.09.2021
Distribution level (CO, PU): PU

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 1 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Title of Deliverable:

Project Number: GA 870338
Project Title: URBANITE
Data Harvesting Module and Connectors

Implementation v1

Due Date of Delivery to the EC:

30.09.2021

Workpackage responsible for the
Deliverable:

WP3 — Data Management Platform

Editor(s):

TEC, ENG, Fraunhofer FOKUS

Contributor(s): TEC, ENG
Reviewer(s): Alma Digit
Approved by: All Partners
y 4
Recommended/mandatory WP4, WR5
readers:
@

Abstract:

v

ks deliverable will have two versions and will present
the software implementation of the data harvesting
module accompanied with the design specification and
documentation. This deliverable is the result of Task 3.1.

Keyword List:

Harvester, Data Management, Piveau, Pipe, Software

Licensing information:

This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer

This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu
Page 2 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Document Description

Document Revision History

_ Modification Reason Modified by

v0.1 16/07/2021 Draft ToC FhG

v0.2 27/08/2021 First Draft FhG
v0.3 08/09/2021 Second Draft FhG, TEC
v0.4 29/09/2021 Suggestions by reviewers FhG
v1.0 30/09/2021 Layouting Fh

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 3 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Table of Contents

TaDIE OF CONTENTS .eeenetiiiiiie ettt ettt e st e e st e st e e e st e e s beeesabeesabeesseeesabeeesnneenns 4
[y o 7= {0 <RSPt 5
LISt Of TaBIES...ceeeeieeee e sttt e b e s bt s et e bt e b e sae e sane e 5
Terms and abbreviatioNns........coo ittt s 6
EXECULIVE SUMIMIAIY 1ttt e e e e s ettt e e e e e e e s bttt e e e e e s s aaanbeeaeeeesssannssraeaeesesnns 7
A 10} o To [ot o o T OOV UPPTOUPRPPRTOTRINt 8
1.1 About this deliverable ..o 8
1.2 DOCUMENT STFUCTUIE ...ttt 8
B [0V o1 [T 0 o [T o) -1 4 o o VPSSP 9
2.1 U o YoraToT o =1 e [T ol o o) d o o TR SRR

4
5

2.11 Fitting into overall URBANITE Architecture.........coceeeeiipe.... 8
2.2 Technical descriptionccoceeeevieeeccciee e,
2.2.1 Piveau Pipe Concept......ccccvvrvrvrvverernrevenererennnennnns

2.2.2 Components OVErVIEWccccvveeeeeeerrnnnnnne
2.2.2.1 Writing an importer/connector
2.2.2.2 Scheduling the data fetching

2.2.3 Technical specifications

Delivery and USAgeccvvvvvvreeeerunnnn. s

3.1 Package informationc.. e
3.2 Installation instruction
3.3

33.1

3.4
35
CONCIUSIONS Lottt ettt ettt ettt s bt s a e et e b e e be e s beesbeesatesabesabe s beebeenbeenneas 21

S =YL (=L TP 21

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 4 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

List of Figures

FIGURE 1: URBANITE ARCHITECTURE ...ccetttttteeeeeeerereeereenererenesesesesenememerenenen 10
FIGURE 2: URBANITE DATA HARVESTING IMPLEMENTED USING THE PIVEAU PIPELINE CONCEPTccevvverenene 11
FIGURE 3: EXAMPLE OF A PIVEAU PIPE DESCRIPTOR ...ccevttttereeeemeeeeeeeeeeeeeeeenererereeeeerererererenerererememerememenen 12
FIGURE 4. IMPORTER FOR AIR QUALITY DATA IN BILBAO ..cceviiiiiiiiiiiiieiiiiieieteeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenen 14

FIGURE 5: REGISTERING A PIPE HANDLER WITH THE VERT.X EVENTBUS.....ccevtttrerererererererererereeererererereeerenenenene
FIGURE 6: PIPE DESCRIPTOR WITH ACCESSURL c.cceeettettereeerereeeeeeeeeeeeeereeeeeeeeeeererereeeeerererereeerenenerererereremenenen
FIGURE 7: WEB CLIENT TO DOWNLOAD AIR QUALITY DATA FROM BILBAQO’S AIR QUALITY SERVICEccceuveennn. 15
FIGURE 8: CREATION OF THE METADATA FOR THE DOWNLOADED DATASET AND DISTRIBUTIONccceeveverereneee 16
FIGURE 9: FORWARDING BOTH THE DATA AND THE METADATA TO THE NEXT PROCESS IN THE PIPELINE.
FIGURE 10: TRIGGERING THE HARVESTING PIPELINE EVERY HOUR ...ceetttiiiiuirreeteeeeeaanierteeeeessesnnrereeeeessennnnee
FIGURE 11: PIVEAU_CLUSTER_CONFIG VARIABLEcceiiiuiiiiiiiiiieiiiitee et e e siree e srae e
FIGURE 12: PIVEAU_SHELL_CONFIG VARIABLEcvttiiiiiiieiiiieeiiitee e nreee s g ssree e ssrneessnnaeessnraes

List of Tables O

TABLE 1: STATUS OF HARVESTER REQUIREMENTS FROM D5
TABLE 2: COMPONENT OVERVIEWevvviereeeeeraiaenneee.

TABLE 3: SCHEDULER SHELL COMMANDS
TABLE 4: SCHEDULER AP ...oeeveiiiiiiiiceieeenne

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 5 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Terms and abbreviations

API Application Programming Interface

EC European Commission

CcC Creative Commons

csv Comma Separated Values

DCAT Data Catalogue Vocabulary

DCAT-AP DCAT Application Profile

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data
MIF/MID Maplnfo Interchange Format

NGSI Next Generation Service Interface

NGSI-LD Next Generation Service Interface Linked Dat
REST Representational State Transfer

RDW Specific Open Data Portal of Amsterda@
SOAP Simple Object Access Protocol

SPDP Standard for Publishing Dynay’c%ata
URL Uniform Resource Locator »

XML eXtensible Markup Langua

XSD XML Schema Defini}ioN

Q«
v

Project Title: URBANITE

Page 6 of 21

Contract No. GA 870338
www.urbanite-project.eu

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Executive Summary

This deliverable contains an overview over the software components that are related to the
tasks of data harvesting. This refers to the process of downloading data for further processing,
albeit without making substantial changes to the data itself. While minor adjustments or filtering
is part of this step, thorough data preparation, transformation and curation are covered in
deliverable D3.5. Due to the heterogeneous nature of the data present in the URBANITE context
the connector modules typically require specific tailoring to the respective methods of access.
As such, the components that have been developed for performing this task are described in
this deliverable.

As shown in deliverable D5.4 the Data Management Platform follows a microservice
architecture. Of course, all components involved in the steps of fetching to storing of data and
metadata must integrate into this architecture. In order to achieve this goal, the Piveau Pipe
Concept is employed, a design approach aimed at high flexibility and loose coupling when
orchestrating software services. The Piveau Pipe Concept is covered in detail in this deliverable,

but also applies to the aforementioned components described in D3.5. 3ge key service in this
architecture is a dedicated scheduling component that is responsibl ring that data is
fetched in regular intervals. For each existing module described i jverable an overview
along with a description is given. Where applicable, details onration and usage are
provided. \

?\
&

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 7 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities that are data harvesting, data
preparation/transformation/curation/anonymization, and data aggregation and storage. The
three deliverables D3.2, D3.5, and D3.7 focus on these core features respectively. Due to the
interaction between these modules the aforementioned deliverables should be understood as
a collection of documents related to the same overarching concept that is the Data Management
Platform.

1.1 About this deliverable

Within the Data Management Platform this deliverable focuses on the data harvesting and the
software components involved in this task, i.e. connectors, importers, and the Scheduler. It
presents the challenges involved in harvesting, the proposed solution, and their
implementation. Also, it features a section that describes the Pived% Pipe concept, an
architecture and software design that is used for implementin vesting related
components. Developers can get started by reading the relevant r@ how to write Piveau

pipe compliant modules. \

1.2 Document structure Q‘

Section 2.1 covers the functionalities providedgy gfe Marvesting components as well as how
they fit into the general URBANITE architectur§. TNis#S followed by a description of the Piveau
Pipe concept, which is the overarching MNinto which the individual harvesting related

components are integrated. These agMlisted in section 2.2.2, along with technical specifications
and explanations on how to dgffelop ®gnnectors configure the scheduler. Next, section 3

contains instructions on how t ild, configure, and run the application(s). The document
wraps up with a conclusion nces.
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 8 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

2 Implementation

2.1 Functional description

The harvesting modules and connectors need to provide a number of functionalities. First and
foremost, they need to implement ways to import (i.e. download) data and metadata from
endpoints on the web. These endpoints can come in all shapes and forms, for example simple
public REST APIs, restricted SQL dumps, simple file downloads, or geodata streams. All these
different kinds of data and metadata then need to be checked, cleaned, and harmonized for
further processing, which is covered in D3.5 [1]. This is achieved by data preparation and
subsequent transformation steps, as well as curation. Once the data and metadata are brought
into a common format (i.e. FIWARE Smart Data Model [2]) they need to be stored in dedicated
databases (covered in D3.7 [3]).

Additionally, the (meta-)data needs to be downloaded in regular intervals to account for changes
thereof. Managing these intervals is the responsibility of the Scheduler. Unlike the other
components described in this deliverable it does not download data itselfqQut triggers the other
data importers, which in turn download the data.

In summary, this deliverable therefore covers harvesting and 'n . For completeness'
sake, the exporting component, which is responsible for pushi ¥y data to the applicable
§

APl endpoints of the data storage, is also featured in this d a Once harvested, data could
be stored directly through the exporter into the datab sifories if no preparation or data
transformation is necessary, or it can be pushed to t t of the pipeline for data quality

checks and transformations. Note that neither ghe eduler nor exporting component are
shown as dedicated modules in Figure 1.

The functional requirements for harvestin dYcheduling were listed in deliverable D5.1 and a
detailed design was provided in deliyfrable D57 [4]. Table 1 shows a short summary of the
development status. All the requir, s applicable to the data models and datasets that are

Data Harvesti Partially fulfilled: more data sources need to be harvested for v2
heterogeneous
sources
I Not fulfilled: the data sources managed in vl did not require
Pagination - L
pagination. This will be addressed for v2
Data Harvesting | Fulfilled: the pipeline design is flexible and extensible
extensibility
Data Harvesting | Fulfilled: although for the moment all harvesters use HTTP(S)
supported protocols
Scheduled data | Fulfilled: Cron triggers can be set up for pipelines
fetching
Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 9 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

2.1.1 Fitting into overall URBANITE Architecture

In general, the harvesting modules and connectors are part of the backend services of the
URBANITE architecture. They are managed by the scheduling component mentioned in the
previous section. Since all related components follow a microservice approach they fit well with
the docker-based architecture designed in WP5. As such, they also scale well, which is
considered a key requirement when frequently downloading potentially large amounts of data
and preparing/transforming them. The components that are described in this deliverable are
highlighted in green in the architecture diagram (Figure 1) from deliverable D5.4.

URBANITE UI Virtual SopoLab
% Keycloak (Identity Management)

\;

Advanced visualization

ul

Reccomendation Engine Policy simulation and validation

Traffic simulation
Triggered by the = Triggered by the user Ul

$ Prediction % Regression Data Clustering
‘\‘\Hv\l projedtion | [~ Self Organizing map
Analytical Framework
Controller
internal workflow ofthe components in the
analysis layer %

Access to Data Bases (direct or through: @ ke Presto)
¥
Data Storage & R al
Data Fusion/Aggregation / Generic APl 1
)

Ul Triggered by the user {SQL, SparkQl

e /
Data preparation
Data transformati Hes
Triggered by the user Transforming it to, Quallity cheds and
anonymization

Client Side Additional middleware
Microproxies Kind of microproxies to harvest , anonimyze . snd connect dsta.
We could offer the specification for the microproxies we will provide the

specification for the interfaces

Data Catalogue

Data Anonymization

solgee Data source
Data source

Q Figure 1: URBANITE Architecture

2.2 Technical description

This section describes the technical details of the implemented software. Data management is
the process of fetching, anonymizing, preparing, transforming, storing, organizing and
maintaining the data created and collected by an organization. Harvesting refers to the subset
of steps from the import of data to the export into a data store. In URBANITE, this harvesting
process has been implemented using a pipelineg, i.e. a chain of processing components arranged
so that the output of each component is the input of the next. The pipeline has been developed
using the open source solution named Piveau Pipe Concept, which is explained in detail in
section 2.2.1. This is followed by an overview of the components that have been developed thus
farin section 2.2.2. Examples of how to write a compatible connector and how to schedule pipes
are included.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 10 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

2.2.1 Piveau Pipe Concept

The components involved in the steps from data fetching until storage are orchestrated by the
Piveau Pipe concept [5] outlined in this section. A high-level overview of how components
interact in this processing chain is shown in Figure 2.

Transform Export

Schedule Import Prepare

Convert data Write the
into the transformed

corresponding data into

NGSI model. storage.

\
e

Figure 2: URBANITE data harvesting im tegusing the Piveau Pipeline concept

Launch pipes Download raw Clean data and

depending on data from the perform
their set API of the data quality and/or
schedule. source. sanity checks.

allows the collection of data from heterogeneous data
[tit®de of subsequent services. In order for a component
t, it needs to be developed as a web service that exposes a
is'explained in detail in section 2.2.2.1. This means that the

On an architectural level, the Pive
sources and the orchestration
to cohere to the Piveau Pipe,con
common RESTful interface,

services can be conne eneric fashion to implement specific data processing chains. No
central instance is res or orchestrating the services. This is achieved by so-called pipe
descriptors, a J at contains a definition of components (endpoints, chronological
order, specific co tions) that make up one processing sequence. Each processing chain is

defined in one of theSe files (see Figure 3).

The Scheduler is the component responsible of managing and launching all the pipelines. To do
so, the Scheduler either reads these files from disk or polls a Git repository to become aware of
which pipes are available. These can then be assigned to a periodic trigger for recurring
execution. When such a trigger fires a copy of the contents of the according pipe descriptor is
sent to the first component in line, i.e. the one identified in the segment with segment number
1. During processing, the pipe descriptor is augmented. Data that needs to be passed along the
processing chain is written into a payload field of the next component in line. For smaller
amounts of data this can happen directly, for larger amounts of data a pointer to an external
datastore can be used. Figure 3 shows an example of a pipe descriptor for downloading Bilbao
air quality data, transforming it, and writing the transformed data to an instance of the data
storage.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 11 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

hheader": {
"id": "UffT7afa7-2fc3-Uesd-abef-a83ab55b698c",
"name": "bilbao-air-quality"
"title": "Bilbao Air Quality",
"context": "URBANITE",
"transport": "payload",
"yersion": "2.0.0" Segment 1:
?[J)Ody" . q Importer
"segments”: [{
PR == T = L
"name" : "importing-bilbac—air-quality",
"segmenthumber" : 1,
"title" : "Importing Bilbao Air Quality",
"processed": false
¥,

"body“ : {
"endpoint”: {
"address": "http://harvester-bilbaco-air-quality:8080/pipe"
}

1
"config": {
"accessUrl": "https://bilbao.urbanite.esilab.org
"catalogue": "bilbao"

}

1__ ___ __ __ A — ————
TReadeT ™ T{ 1

n " n - — —_ - —

"name : plveaflconsus transforming-js i

segmenthumber”: 2,

"title": "Transforming js",

"processed": false
}J
"body": {

"endpoint”: {
"address": "http://tgans&{emeNMs:8080/pipe" :
} 1
1
1
1
1
1
1
1
1
1
1
1

Meta-

/ information

I
I
I
I
I
I
I
I
I
il

I
I
I
I
|
I
I
I
El

| =

LH!‘"—_—_—_—_—_—_—_—_—_

Transformer

"config": {
"single": true
"scriptType"
I[path n : l}j 5
"params" :

refgitory",
a0-@®r—quality.js",

Segment 3:
Exporter

lage": "es"

P I e

-5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1

"

® "piveau-consus—exporter”,

. enthumber": 3,

1 tle": "Data Catalogue and Storage Exporter",
1 "processed": false

),

. nbodyu: {

1 "endpoint": {

1 "address": "http://exporter:8080/pipe"
1

.

1

1

1

1

1

1

1

1
"config": {
"datastoreUrls”: ["https://bilbac.urbanite.esilab.org/data"],
"model”: "airQualityObserved",
"city": "bilbao"

Figure 3: Example of a Piveau Pipe Descriptor

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 12 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

As can be seen, each segment contains a header with metadata and a body with component-
specific configurations, for example relevant URLs. As stated earlier, this resembles the pipe’s
descriptor. Whenever the Scheduler triggers a pipe, this descriptor is sent to the first component
in line, in this case the importing-bilbaoc-air-quality module. Each dataset is
immediately sent to the next component, in this case the transforming-js module. Once the
datasets have been transformed to the desired output format, in this case the FIWARE
airQualityObserved SmartData model, the result is sent to the Exporter, an adapter that is
capable of uploading data and metadata to the data storage. The process of how the conversion
of data between import and export is accomplished is explained in detail in deliverable D3.5 [1].

It is important to note that all this happens on a per-dataset basis, that is, the Importer does not
wait for all datasets to download and send the payload in bulk, but each dataset is handled
individually. This ensures flexibility, as no component needs to keep state or track how much
data has been received. Also, each component can be scaled individually depending on the
respective workloads.

The way this works is that payloads are injected into the descriptor as Wis passed along the
pipeline. The descriptor is therefore not a static, immutable object, b s over time. This
also makes debugging easier, as the evolution of the payload can bgr e . The Scheduler does
not provide a payload, so the descriptor is sent as is. The ImpQqrt¢ ever, creates a copy of
the descriptor for each dataset it downloads and injects saj %@ to this copy. Of course,
each component is also capable of extracting their respeci{v ds. The Transformer works
in the same way; it takes the payload sent by the Im , esses it, and injects the result
as a payload for the Exporter.

2.2.2 Components overview

At time of writing the following h ting related components shown in Table 2 have been
developed. All of these componp#hts a uitable for continuous fetching of data in regular
intervals. In contrast, historic d r public holidays/calendar data by nature aren’t prone to
frequent changes and/or u . Wpr simplicities sake, this kind of data has been loaded into
the data storage using Jgmg c that is not included in the Piveau pipeline. However, using the
file importer this cou n accomplished in coherence with the Piveau pipeline.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 13 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Table 2: Component Overview

(Type |Name | Descripion |

OpenWeatherMap Downloads weather data from the OpenWeatherMap provider.
Requires an account with a valid API key.
OpenStreetMap Downloads data from OpenStreetMap. The query must be
configured into the respective pipe descriptor.
File Generic importer for downloading files from URLs. The file is
Importer/ Base64 gncodgt_:l _prior to forwarding. For larger files, a _
Connector mechanism utilizing the filesystem for storage and only passing
pointer to this data will be implemented. The importer ships
with a Python script that can be used to spin up a simple
webserver that serves a file from local storage over HTTP.
Bilbao Air Quality Downloads weather data from a regional provider.
Bilbao Traffic Flow Download traffic data from a regional provider.
Helsinki Traffic Flow Download traffic data from a regional provider.
Scheduler Keeps track of existing pipe descriptors and manages triggers.
The former are polled from a Git reposit the latter can be
created/updated/deleted via a REST ervice exposes a
; ws basic interaction
d [aunching them
Misc.
Data Storage ala to the data storage.
Exporter ulliple storages, which is required
#tiple environments.
Historic data istorical data (air quality, traffic)
wrappers i
Piveau Pipe Model information encoded in a pipe descriptor.
ion’of related methods, like (de-) serializing and
sefping certdWfields.
Library Piveau Pipe les communication between pipe components. Should be
Connector " use en implementing pipe compliant services.
Piveau Pipe Launch s used by the Scheduler for initiating execution of existing
ipes.

2.2.2.1 Writing g orter/connector

In this section, de a detailed explanation on how to create an importer/connector to
easily integrate it i he pipeline. The connector or importer in segment 1 will download the
data, make a first validation of it, create the necessary metadata and redirect to the next process
in the pipeline. Harvesting related components are based on Vert.X! framework. Therefore, the
connector/importer should be an instance of the Verticle class.

public class ImportingBilbaocAirQualityVerticle extends AbstractVerticle

Figure 4. Importer for air quality data in Bilbao

When this Verticle is launched for the first time, the handler for processing pipe messages is
registered with the eventbus. The MainVerticle, which is responsible for spawning the Pipe API

L https://vertx.io/
Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu

Page 14 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

and content-negotiation, send incoming requests along the eventbus. This is then consumed by
the aforementioned handler. This is shown in Figure 5.

@verride
public wvoid start({Promise<Void> startPromise) {
vertx.eventBus().consumer{"bilbao-importer"”, message -» {
PipeContext pipeContext = message.body();
pipeContext.log().info{"Import started");
accessUrl = pipeContext.getConfig().getString{"accessUrl");

1)

Figure 5: Registering a Pipe handler with the Vert.X Eventbys

In the example in Figure 5, accessUrl is a parameter included i @ pe descriptor, as shown
in Figure 6.

"accessUrl": "https://urbanite.esi 443/data",
"catalogue": "helsinki"

e 2)
Q&

}

Figure 6: Pi iptor with accessUrl

Thanks to the pipe descriptor, the s importer can be used to harvest different data sources
without modifying the componen#s co o download the data, a web client can be used if the
data source is available through , e.g. in the case of a web service APl or a URL.

ps://bilbao.urbanite.esilab.org/data")
Param{ "R@1HNoPortal”, "true")

.expect(ResponsePredicate.5C OK)
send()

Figure 7: Web client to download air quality data from Bilbao’s air quality service

Once the data is downloaded, not all of it is forwarded to the next process in the pipeline. For
example, the Basque Country’s air quality service (see Figure 8) returns data about all the
meteorological stations in the entire province. However, in URBANITE, we are only interested in
the information coming from the stations in the municipality of Bilbao. The rest of the data is
discarded. In addition, the metadata is created for the downloaded data and forwarded in the
metadata field. The helper classes for constructing DCAT-AP metadata are included in the
Piveau libraries.

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 15 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

DCATAPGraph dcatapGraph = new DCATAPGraph();
Dataset dataset = dcatapGraph.createDataset("sample dataset")
.setTitle("Bilbac Air Quality")
.setDescription("Air Quality information for Bilbao")
.addKeyword({"Bilbao")
.addKeyword({"Air Quality")
.setIssued(Instant.now())
.setModified(Instant.now())
.setAccessRights({"public")
.setTheme("http://publications.europa.eu/resource/authority/data-theme/REGI")
.setTheme("http://publications.europa.eu/resource/authority/data-theme/TRAN")
.setPublisher("URBANITE", "https://urbanite-project.eu/");

dataset.createDistribution("sample_distribution")
.setAccessURL({accessUrl + "/getTDataRange/airQualityObserved/bilbao)
.setFormat{"http://publications.europa.eu/resource/authority/file-type/JI50N")
.setlicense("http://publications.europa.eu/resource/authority/licence/CC_BY")
.setDescription("Air Quality information for Bilbaco")
.setTitle("Bilbao Air Quality)
Lbuild();

Figure 8: Creation of the metadata for the download, x d distribution

Finally, both the data and metadata are forwarded to t ext pglcess in the pipeline (see Figure

9). For all interaction between the Piveau Pipe servic ipe-connector?library should be
used. It provides an abstraction from the ingfer kings and communication protocols
implemented. It also parses the incoming pip ipyers and extracts the applicable segment

info for a given service.

/ pass dataset to next pipe modulg
private void forwardDataset(JsonQgject Wgtaset, PipeContext pipeContext, String identifier) {
Objecthode datalnfo = new lapper().createlfbjecthode()
put("identifier”, i tifier)
.put("catalogue text.getConfig().getString("catalogue"));

pipeContext.log("Ingorter result:\n{}", dataset.encodePrettily());
pipeContext.setRes (daTaset.encodePrettily(), "application/json”, dataInfo).forward();

Figure 9: For Ing both the data and the metadata to the next process in the pipeline.

2 https://github.com/piveau-data/piveau-pipe-connector

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu

Page 16 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

2.2.2.2 Scheduling the data fetching

Depending on the data source, the update frequency changes. For example, traffic flow data is
updated every 5 minutes whereas air quality data is updated every hour. For this reason, each
pipeline needs to be triggered with a different frequency. As explained before, the Scheduler is
the component responsible of managing these triggers. To configure the Scheduler, triggers can
be set using the provided REST API. It supports one-time (“immediate”) and Cron3 triggers. For
example, to trigger the harvesting pipeline for the air quality data every hour we would send the
request shown in Figure 10 via PUT method to triggers/bilbaoc-air-quality. Note the
pipeId inthe payload (bilbao-air-quality).

2.2.3 Technical specifications

"id": "BilbaoAirQuality",
"status": "enabled",

"cron": "0 0 0/1 2 * * *mw,
"next": "2021-07-23T10:45:002"
}
]
Figure 10: Triggering the harvestinggmgeline gfery hour

All harvesting related components are written ing8va¥ad are based on the Vert.X* framework
developed by the Eclipse Foundation. Vegt$ ogpSes and supports an asynchronous
programming paradigm which aims to improvg p rmance and responsiveness by ensuring
that a thread is never blocked by long-runn ks. The basis of this is the Netty® project.

The pipe functionality (parsing and fhaNpulating the pipe descriptor) is provided by the Piveau
Pipe Model library. The commgf epdpoMt each component exposes is implemented by the
Piveau Pipe Connector library.

All pipe components e t tN€ Scheduler are stateless. As such, only the Scheduler requires a
database and for thi elies on the embedded version of the Open-Source relational
database H2%, ac eWia JDBC. The component uses the database to store pipeline triggers.

With all services b VM based the software stack runs on any machine that is supported by
the JVM. Depending on the number of instances running and the kind of data that is processed
a sufficient amount of memory should be available.

3 http://www.nncron.ru/help/EN/working/cron-format.htm
4 https://vertx.io/

5 https://netty.io/

6 https://h2database.com

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 17 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

3 Delivery and usage

3.1 Package information

All components are Java applications that are built using Maven’. As such they cohere to the
default standardized folder structure for source files
(/src/main/java/io/piveau/ {componentName}) and resource files
(/src/main/resources). The latter contains files like the OpenAPI specification
(webroot/openapi.yaml) when applicable and logging configuration (Logback. xml).

3.2 Installation instructions

In order to integrate well into the URBANITE platform all components are available as Docker
images. However, before building the Docker images the corresponding JAR file needs to be
created. A JAR file is an executable that run runs on the JVM. The harvesting components rely
on a build tool called Maven for dependency management and generatiorgf the JARs. As such,
the deployment of a service can be achieved using the three comman . Note that curly

brackets indicate that applicable values need to be substituted. O

$> mvn clean package \

$> docker build -t urbanite/{component-name

$> docker run -p {PORT}:8080 urbanite/{ nt-name}

Depending on the respective component a c igfcopfiguration may need to be applied, for
example an API key. This can be achieved usin®enWgBnment variables, which can be passed to
Docker containers like so:

$> docker run -e {ENV_VAR} ue} urbanite/{component-name}

3.3 User Manual 2 ?*

In general, each com rovides a human readable form of its OpenAPI specification at
{hostname:p 1Ndex.html. corresponding file is stored at
src/main/res s/webroot/openapi.yaml. However, this does not apply to
those components tifat spawn their endpoints based on a library. This is specifically the case for
all pipe components that rely on the Piveau Pipe Connector library. These expose the common
endpoint at {hostname:port}/pipe, which accepts compliant pipe descriptors via the
HTTP POST method.

Aside from this most of the components require very little configuration and work out of the
box. The specific environment variables that need to be set for each service are listed in the
respective README . md file in the root directory.

7 https://maven.apache.org/

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 18 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

3.3.1 Scheduler

A special case however is the Scheduler, which requires a little more setup and also exposes
more endpoints than the other pipe components. As described previously the Scheduler serves
two main purposes: keeping track of existing pipe descriptors and managing triggers for these
pipes. In order to fulfil the former task, the pipe descriptors can either be copied to the
src/main/resources/pipes directory before compilation. Alternatively, the descriptors
can be managed using a GitLab repository. For this a so-called cluster-config akin to the snippet
shown in Figure 11 must be set.

PIVEAU CLUSTER CONFIG:

{

"pipeRepositories": {
"system": {
"uri":

"https://gitlab.com/urbanite/harvesting-
pipes.git",

"username": "gitlab-user",
"token": "gitlab-token”,
"branch": "master"
}
) \
}
Figure 11: PIVEAU_CLUSTE riable
The Scheduler frequently polls this repository, ygetecting changes to the pipe descriptors

at runtime. In order to monitor pipe degcripVors¥egistered with the Scheduler, view their

contents or launch them manually the gompoMe@t exposes a shell, accessible either via HTTP or
Telnet. To enable this a shell config& one in Figure 12 must be set.

PIVEAU SHE§ CONFIG:
{

{
"host": "0.0.0.0",
port": 8085
, "telnet": {
"host": "0.0.0.0",
"port": 5000

Figure 12: PIVEAU_SHELL _CONFIG variable

This exposes HTTP access at {hostname} :8085/shell.html and Telnet access on port 5000.
The available shell commands are shown in Table 3.

Table 3: Scheduler Shell Commands

pipes

List available pipes.

show {pipeld}

View contents specific pipe descriptor.

trigger {pipeld}

List triggers of specific pipe.

launch {pipeld}

Start specific pipe immediately.

Project Title: URBANITE

Contract No. GA 870338
www.urbanite-project.eu
Page 19 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

Management of triggers is made possible via an exposed RESTful API. The available paths and
corresponding methods are listed in Table 4.

Table 4: Scheduler API

Jtriggers GET Get a list of pipe IDs and scheduled triggers.

PUT Bulk update of all triggers.

GET Returns all triggers for the pipe with the specified pipeld.
/triggers/{pipeld} | PUT Create or update triggers for pipe with pipeld.

DELETE Delete previously created triggers.

3.4 Licensing information

The license terms for the software are under discussion among the consortium. AGPLv2 and
AGPLv3® are being considered.

3.5 Download

All source code resides in the GitLab maintained by Tecnalia®. Th @ bt specific components
(i.e. data source adapters) are grouped in dedicated s . eneric harvesters and
components resign in the root.

&
Q

8 https://www.gnu.org/licenses/agpl-3.0.en.html|
% https://git.code.tecnalia.com/urbanite/private/wp3-data-management/harvester

Project Title: URBANITE Contract No. GA 870338
www.urbanite-project.eu
Page 20 of 21

D3.2 — Data Harvesting Module and Connectors Implementation V1.0 — Final. Date: 30.09.2021

4 Conclusions

Overall, this document describes the technical details of the components involved in the
harvesting process. This includes the custom adapters for data sources, both generic and pilot
specific as well as common components like the Scheduler. It is shown how these modules
integrate into the general URBANITE data management platform architecture and the Piveau
Pipe concept. The latter describes a mechanism of loose component coupling by standardising
exposed APls, thereby fostering the reuse of existing services. For developers the deliverable
contains instructions on how to develop Piveau pipe compliant services.

Additionally, noteworthy components like the Scheduler are described in detail with respect to
implementation and configuration. A more general rundown of the other components is also
provided. In conclusion this deliverable allows the reader to get an understanding of the
technical solution(s) employed for the continuous harvesting of data sources.

5 References O
[1] FhG, TEC and ENG, “Data curation module implement@\,ZOZL

[2] TEC, C. Messina, ENG, BIL, MLC and FhG, “ obility Data Sources Analysis,”
European Commission, 2020.

[3] FhG, TEC and ENG, “Data aggregation %ra e module implementation-v1,” 2021.

[4] TEC, FhG, ENG and JSI, ”URBAN&ﬂtecture,” 2021.

[5] F. Kirstein, K. Stefanidis, B. D ald, S. Dutkowski, S. Urbanek and M. Hauswirth, “Piveau: A

Large-Scale Open Data ent Platform Based on Semantic Web Technologies,”
2020.
[6] FhG, TEC and ta harvesting module and connectors implementation-v1,” 2021.

[7] FhG, TEC and ENgZ“URBANITE data structure and semantic model specification,” 2020.

[8] TEC, FhG, ENG and JSI, “Detailed requirements specification,” 2020.

Project Title: URBANITE Contract No. GA 870338

www.urbanite-project.eu
Page 21 of 21

