
D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 21

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D3.2

Data Harvesting Module and Connectors Implementation v1

Editor(s): TEC, ENG, FhG

Responsible Partner: Fraunhofer FOKUS

Status-Version: Final – v1.0

Date: 30.09.2021

Distribution level (CO, PU): PU

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 21

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable:
Data Harvesting Module and Connectors
Implementation v1

Due Date of Delivery to the EC: 30.09.2021

Workpackage responsible for the
Deliverable:

WP3 – Data Management Platform

Editor(s): TEC, ENG, Fraunhofer FOKUS

Contributor(s): TEC, ENG

Reviewer(s): Alma Digit

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5

Abstract: This deliverable will have two versions and will present

the software implementation of the data harvesting
module accompanied with the design specification and
documentation. This deliverable is the result of Task 3.1.

Keyword List: Harvester, Data Management, Piveau, Pipe, Software

Licensing information: This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 21

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 16/07/2021 Draft ToC FhG

v0.2 27/08/2021 First Draft FhG

v0.3 08/09/2021 Second Draft FhG, TEC

v0.4 29/09/2021 Suggestions by reviewers FhG

v1.0 30/09/2021 Layouting FhG

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 21

Table of Contents

Table of Contents .. 4

List of Figures .. 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall URBANITE Architecture ... 10

2.2 Technical description .. 10

2.2.1 Piveau Pipe Concept .. 11

2.2.2 Components overview .. 13

2.2.2.1 Writing an importer/connector .. 14

2.2.2.2 Scheduling the data fetching ... 17

2.2.3 Technical specifications ... 17

3 Delivery and usage .. 18

3.1 Package information ... 18

3.2 Installation instructions ... 18

3.3 User Manual .. 18

3.3.1 Scheduler ... 19

3.4 Licensing information .. 20

3.5 Download .. 20

4 Conclusions ... 21

5 References ... 21

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 21

List of Figures

FIGURE 1: URBANITE ARCHITECTURE .. 10
FIGURE 2: URBANITE DATA HARVESTING IMPLEMENTED USING THE PIVEAU PIPELINE CONCEPT 11
FIGURE 3: EXAMPLE OF A PIVEAU PIPE DESCRIPTOR .. 12
FIGURE 4. IMPORTER FOR AIR QUALITY DATA IN BILBAO ... 14
FIGURE 5: REGISTERING A PIPE HANDLER WITH THE VERT.X EVENTBUS ...
FIGURE 6: PIPE DESCRIPTOR WITH ACCESSURL ..
FIGURE 7: WEB CLIENT TO DOWNLOAD AIR QUALITY DATA FROM BILBAO’S AIR QUALITY SERVICE 15
FIGURE 8: CREATION OF THE METADATA FOR THE DOWNLOADED DATASET AND DISTRIBUTION 16
FIGURE 9: FORWARDING BOTH THE DATA AND THE METADATA TO THE NEXT PROCESS IN THE PIPELINE.
FIGURE 10: TRIGGERING THE HARVESTING PIPELINE EVERY HOUR ...
FIGURE 11: PIVEAU_CLUSTER_CONFIG VARIABLE ...
FIGURE 12: PIVEAU_SHELL_CONFIG VARIABLE ..

List of Tables

TABLE 1: STATUS OF HARVESTER REQUIREMENTS FROM D5.1 ... 9
TABLE 2: COMPONENT OVERVIEW ... 14
TABLE 3: SCHEDULER SHELL COMMANDS .. 19
TABLE 4: SCHEDULER API ... 20

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 21

Terms and abbreviations

API Application Programming Interface

EC European Commission

CC Creative Commons

CSV Comma Separated Values

DCAT Data Catalogue Vocabulary

DCAT-AP DCAT Application Profile

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

MIF/MID MapInfo Interchange Format

NGSI Next Generation Service Interface

NGSI-LD Next Generation Service Interface Linked Data

REST Representational State Transfer

RDW Specific Open Data Portal of Amsterdam

SOAP Simple Object Access Protocol

SPDP Standard for Publishing Dynamic Parking Data

URL Uniform Resource Locator

XML eXtensible Markup Language

XSD XML Schema Definition

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 21

Executive Summary

This deliverable contains an overview over the software components that are related to the
tasks of data harvesting. This refers to the process of downloading data for further processing,
albeit without making substantial changes to the data itself. While minor adjustments or filtering
is part of this step, thorough data preparation, transformation and curation are covered in
deliverable D3.5. Due to the heterogeneous nature of the data present in the URBANITE context
the connector modules typically require specific tailoring to the respective methods of access.
As such, the components that have been developed for performing this task are described in
this deliverable.

As shown in deliverable D5.4 the Data Management Platform follows a microservice
architecture. Of course, all components involved in the steps of fetching to storing of data and
metadata must integrate into this architecture. In order to achieve this goal, the Piveau Pipe
Concept is employed, a design approach aimed at high flexibility and loose coupling when
orchestrating software services. The Piveau Pipe Concept is covered in detail in this deliverable,
but also applies to the aforementioned components described in D3.5. One key service in this
architecture is a dedicated scheduling component that is responsible for ensuring that data is
fetched in regular intervals. For each existing module described in this deliverable an overview
along with a description is given. Where applicable, details on configuration and usage are
provided.

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 21

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities that are data harvesting, data
preparation/transformation/curation/anonymization, and data aggregation and storage. The
three deliverables D3.2, D3.5, and D3.7 focus on these core features respectively. Due to the
interaction between these modules the aforementioned deliverables should be understood as
a collection of documents related to the same overarching concept that is the Data Management
Platform.

1.1 About this deliverable

Within the Data Management Platform this deliverable focuses on the data harvesting and the
software components involved in this task, i.e. connectors, importers, and the Scheduler. It
presents the challenges involved in harvesting, the proposed solution, and their
implementation. Also, it features a section that describes the Piveau Pipe concept, an
architecture and software design that is used for implementing all harvesting related
components. Developers can get started by reading the relevant sections on how to write Piveau
pipe compliant modules.

1.2 Document structure

Section 2.1 covers the functionalities provided by the harvesting components as well as how

they fit into the general URBANITE architecture. This is followed by a description of the Piveau

Pipe concept, which is the overarching design into which the individual harvesting related

components are integrated. These are listed in section 2.2.2, along with technical specifications

and explanations on how to develop connectors configure the scheduler. Next, section 3

contains instructions on how to build, configure, and run the application(s). The document

wraps up with a conclusion and references.

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 21

2 Implementation

2.1 Functional description

The harvesting modules and connectors need to provide a number of functionalities. First and
foremost, they need to implement ways to import (i.e. download) data and metadata from
endpoints on the web. These endpoints can come in all shapes and forms, for example simple
public REST APIs, restricted SQL dumps, simple file downloads, or geodata streams. All these
different kinds of data and metadata then need to be checked, cleaned, and harmonized for
further processing, which is covered in D3.5 [1]. This is achieved by data preparation and
subsequent transformation steps, as well as curation. Once the data and metadata are brought
into a common format (i.e. FIWARE Smart Data Model [2]) they need to be stored in dedicated
databases (covered in D3.7 [3]).

Additionally, the (meta-)data needs to be downloaded in regular intervals to account for changes
thereof. Managing these intervals is the responsibility of the Scheduler. Unlike the other
components described in this deliverable it does not download data itself, but triggers the other
data importers, which in turn download the data.

In summary, this deliverable therefore covers harvesting and scheduling. For completeness'
sake, the exporting component, which is responsible for pushing arbitrary data to the applicable
API endpoints of the data storage, is also featured in this deliverable. Once harvested, data could
be stored directly through the exporter into the database repositories if no preparation or data
transformation is necessary, or it can be pushed to the next step of the pipeline for data quality
checks and transformations. Note that neither the Scheduler nor exporting component are
shown as dedicated modules in Figure 1.

The functional requirements for harvesting and scheduling were listed in deliverable D5.1 and a
detailed design was provided in deliverable D5.4 [4]. Table 1 shows a short summary of the
development status. All the requirements applicable to the data models and datasets that are
covered in the first prototype have been fulfilled or partially fulfilled. More data models and
pagination will be supported for the second version.

Table 1: Status of Harvester requirements from D5.1

Requirements in D5.1 Current Status

Data Harvesting from
heterogeneous data
sources

Partially fulfilled: more data sources need to be harvested for v2

Pagination
Not fulfilled: the data sources managed in v1 did not require
pagination. This will be addressed for v2

Data Harvesting
extensibility

Fulfilled: the pipeline design is flexible and extensible

Data Harvesting
supported protocols

Fulfilled: although for the moment all harvesters use HTTP(S)

Scheduled data
fetching

Fulfilled: Cron triggers can be set up for pipelines

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 21

2.1.1 Fitting into overall URBANITE Architecture

In general, the harvesting modules and connectors are part of the backend services of the
URBANITE architecture. They are managed by the scheduling component mentioned in the
previous section. Since all related components follow a microservice approach they fit well with
the docker-based architecture designed in WP5. As such, they also scale well, which is
considered a key requirement when frequently downloading potentially large amounts of data
and preparing/transforming them. The components that are described in this deliverable are
highlighted in green in the architecture diagram (Figure 1) from deliverable D5.4.

Figure 1: URBANITE Architecture

2.2 Technical description

This section describes the technical details of the implemented software. Data management is
the process of fetching, anonymizing, preparing, transforming, storing, organizing and
maintaining the data created and collected by an organization. Harvesting refers to the subset
of steps from the import of data to the export into a data store. In URBANITE, this harvesting
process has been implemented using a pipeline, i.e. a chain of processing components arranged
so that the output of each component is the input of the next. The pipeline has been developed
using the open source solution named Piveau Pipe Concept, which is explained in detail in
section 2.2.1. This is followed by an overview of the components that have been developed thus
far in section 2.2.2. Examples of how to write a compatible connector and how to schedule pipes
are included.

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 21

2.2.1 Piveau Pipe Concept

The components involved in the steps from data fetching until storage are orchestrated by the
Piveau Pipe concept [5] outlined in this section. A high-level overview of how components
interact in this processing chain is shown in Figure 2.

Figure 2: URBANITE data harvesting implemented using the Piveau Pipeline concept

On an architectural level, the Piveau Pipe allows the collection of data from heterogeneous data
sources and the orchestration of a multitude of subsequent services. In order for a component
to cohere to the Piveau Pipe concept, it needs to be developed as a web service that exposes a
common RESTful interface, which is explained in detail in section 2.2.2.1. This means that the
services can be connected in a generic fashion to implement specific data processing chains. No
central instance is responsible for orchestrating the services. This is achieved by so-called pipe
descriptors, a JSON file that contains a definition of components (endpoints, chronological
order, specific configurations) that make up one processing sequence. Each processing chain is
defined in one of these files (see Figure 3).

The Scheduler is the component responsible of managing and launching all the pipelines. To do
so, the Scheduler either reads these files from disk or polls a Git repository to become aware of
which pipes are available. These can then be assigned to a periodic trigger for recurring
execution. When such a trigger fires a copy of the contents of the according pipe descriptor is
sent to the first component in line, i.e. the one identified in the segment with segment number
1. During processing, the pipe descriptor is augmented. Data that needs to be passed along the
processing chain is written into a payload field of the next component in line. For smaller
amounts of data this can happen directly, for larger amounts of data a pointer to an external
datastore can be used. Figure 3 shows an example of a pipe descriptor for downloading Bilbao
air quality data, transforming it, and writing the transformed data to an instance of the data
storage.

Schedule

Launch pipes
depending on

their set
schedule.

Import

Download raw
data from the
API of the data

source.

Prepare

Clean data and
perform

quality and/or
sanity checks.

Transform

Convert data
into the

corresponding
NGSI model.

Export

Write the
transformed

data into
storage.

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 21

Figure 3: Example of a Piveau Pipe Descriptor

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 21

As can be seen, each segment contains a header with metadata and a body with component-
specific configurations, for example relevant URLs. As stated earlier, this resembles the pipe’s
descriptor. Whenever the Scheduler triggers a pipe, this descriptor is sent to the first component
in line, in this case the importing-bilbao-air-quality module. Each dataset is
immediately sent to the next component, in this case the transforming-js module. Once the
datasets have been transformed to the desired output format, in this case the FIWARE
airQualityObserved SmartData model, the result is sent to the Exporter, an adapter that is
capable of uploading data and metadata to the data storage. The process of how the conversion
of data between import and export is accomplished is explained in detail in deliverable D3.5 [1].

It is important to note that all this happens on a per-dataset basis, that is, the Importer does not
wait for all datasets to download and send the payload in bulk, but each dataset is handled
individually. This ensures flexibility, as no component needs to keep state or track how much
data has been received. Also, each component can be scaled individually depending on the
respective workloads.

The way this works is that payloads are injected into the descriptor as it is passed along the
pipeline. The descriptor is therefore not a static, immutable object, but changes over time. This
also makes debugging easier, as the evolution of the payload can be tracked. The Scheduler does
not provide a payload, so the descriptor is sent as is. The Importer, however, creates a copy of
the descriptor for each dataset it downloads and injects said dataset into this copy. Of course,
each component is also capable of extracting their respective payloads. The Transformer works
in the same way; it takes the payload sent by the Importer, processes it, and injects the result
as a payload for the Exporter.

2.2.2 Components overview

At time of writing the following harvesting related components shown in Table 2 have been
developed. All of these components are suitable for continuous fetching of data in regular
intervals. In contrast, historic data or public holidays/calendar data by nature aren’t prone to
frequent changes and/or updates. For simplicities sake, this kind of data has been loaded into
the data storage using Java code that is not included in the Piveau pipeline. However, using the
file importer this could have been accomplished in coherence with the Piveau pipeline.

 DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 21

Table 2: Component Overview

Type Name Description

Importer/
Connector

OpenWeatherMap Downloads weather data from the OpenWeatherMap provider.
Requires an account with a valid API key.

OpenStreetMap Downloads data from OpenStreetMap. The query must be
configured into the respective pipe descriptor.

File Generic importer for downloading files from URLs. The file is
Base64 encoded prior to forwarding. For larger files, a
mechanism utilizing the filesystem for storage and only passing
pointer to this data will be implemented. The importer ships
with a Python script that can be used to spin up a simple
webserver that serves a file from local storage over HTTP.

Bilbao Air Quality Downloads weather data from a regional provider.

Bilbao Traffic Flow Download traffic data from a regional provider.

Helsinki Traffic Flow Download traffic data from a regional provider.

Misc.

Scheduler Keeps track of existing pipe descriptors and manages triggers.
The former are polled from a Git repository, the latter can be
created/updated/deleted via a REST API. The service exposes a
shell accessible by HTTP or Telnet that allows basic interaction
like viewing existing pipe descriptors and launching them
manually.

Data Storage
Exporter

Pushes incoming data and metadata to the data storage.
Allows the specification of multiple storages, which is required
for data that is relevant to multiple environments.

Historic data
wrappers

Manage the files with historical data (air quality, traffic)
provided by the cities.

Library

Piveau Pipe Model Container for storing information encoded in a pipe descriptor.
Offers a selection of related methods, like (de-) serializing and
setting certain fields.

Piveau Pipe
Connector

Handles communication between pipe components. Should be
used when implementing pipe compliant services.

Piveau Pipe Launcher Is used by the Scheduler for initiating execution of existing
pipes.

2.2.2.1 Writing an importer/connector

In this section, we provide a detailed explanation on how to create an importer/connector to
easily integrate it into the pipeline. The connector or importer in segment 1 will download the
data, make a first validation of it, create the necessary metadata and redirect to the next process
in the pipeline. Harvesting related components are based on Vert.X1 framework. Therefore, the
connector/importer should be an instance of the Verticle class.

Figure 4. Importer for air quality data in Bilbao

When this Verticle is launched for the first time, the handler for processing pipe messages is
registered with the eventbus. The MainVerticle, which is responsible for spawning the Pipe API

1 https://vertx.io/

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 21

and content-negotiation, send incoming requests along the eventbus. This is then consumed by
the aforementioned handler. This is shown in Figure 5.

In the example in Figure 5, accessUrl is a parameter included in the pipe descriptor, as shown
in Figure 6.

Thanks to the pipe descriptor, the same importer can be used to harvest different data sources
without modifying the component’s code. To download the data, a web client can be used if the
data source is available through HTTP, e.g. in the case of a web service API or a URL.

Figure 7: Web client to download air quality data from Bilbao’s air quality service

Once the data is downloaded, not all of it is forwarded to the next process in the pipeline. For
example, the Basque Country’s air quality service (see Figure 8) returns data about all the
meteorological stations in the entire province. However, in URBANITE, we are only interested in
the information coming from the stations in the municipality of Bilbao. The rest of the data is
discarded. In addition, the metadata is created for the downloaded data and forwarded in the
metadata field. The helper classes for constructing DCAT-AP metadata are included in the
Piveau libraries.

Figure 5: Registering a Pipe handler with the Vert.X Eventbus

"config": {

 "accessUrl": "https://urbanite.esilab.org:8443/data",

 "catalogue": "helsinki"

}

Figure 6: Pipe descriptor with accessUrl

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 21

Figure 8: Creation of the metadata for the downloaded dataset and distribution

Finally, both the data and metadata are forwarded to the next process in the pipeline (see Figure
9). For all interaction between the Piveau Pipe services the pipe-connector2 library should be
used. It provides an abstraction from the inner workings and communication protocols
implemented. It also parses the incoming pipe descriptors and extracts the applicable segment
info for a given service.

2 https://github.com/piveau-data/piveau-pipe-connector

Figure 9: Forwarding both the data and the metadata to the next process in the pipeline. DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 21

2.2.2.2 Scheduling the data fetching

Depending on the data source, the update frequency changes. For example, traffic flow data is

updated every 5 minutes whereas air quality data is updated every hour. For this reason, each

pipeline needs to be triggered with a different frequency. As explained before, the Scheduler is

the component responsible of managing these triggers. To configure the Scheduler, triggers can

be set using the provided REST API. It supports one-time (“immediate”) and Cron3 triggers. For

example, to trigger the harvesting pipeline for the air quality data every hour we would send the

request shown in Figure 10 via PUT method to triggers/bilbao-air-quality. Note the

pipeId in the payload (bilbao-air-quality).

2.2.3 Technical specifications

All harvesting related components are written in Java and are based on the Vert.X4 framework
developed by the Eclipse Foundation. Vert.X proposes and supports an asynchronous
programming paradigm which aims to improve performance and responsiveness by ensuring
that a thread is never blocked by long-running tasks. The basis of this is the Netty5 project.

The pipe functionality (parsing and manipulating the pipe descriptor) is provided by the Piveau
Pipe Model library. The common endpoint each component exposes is implemented by the
Piveau Pipe Connector library.

All pipe components except the Scheduler are stateless. As such, only the Scheduler requires a
database and for this purpose relies on the embedded version of the Open-Source relational
database H26, accessible via JDBC. The component uses the database to store pipeline triggers.

With all services being JVM based the software stack runs on any machine that is supported by
the JVM. Depending on the number of instances running and the kind of data that is processed
a sufficient amount of memory should be available.

3 http://www.nncron.ru/help/EN/working/cron-format.htm
4 https://vertx.io/
5 https://netty.io/
6 https://h2database.com

[

 {

 "id": "BilbaoAirQuality",

 "status": "enabled",

 "cron": "0 0 0/1 ? * * *",

 "next": "2021-07-23T10:45:00Z"

 }

]

Figure 10: Triggering the harvesting pipeline every hour

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 21

3 Delivery and usage

3.1 Package information

All components are Java applications that are built using Maven7. As such they cohere to the
default standardized folder structure for source files
(/src/main/java/io/piveau/{componentName}) and resource files
(/src/main/resources). The latter contains files like the OpenAPI specification
(webroot/openapi.yaml) when applicable and logging configuration (logback.xml).

3.2 Installation instructions

In order to integrate well into the URBANITE platform all components are available as Docker
images. However, before building the Docker images the corresponding JAR file needs to be
created. A JAR file is an executable that run runs on the JVM. The harvesting components rely
on a build tool called Maven for dependency management and generation of the JARs. As such,
the deployment of a service can be achieved using the three commands below. Note that curly
brackets indicate that applicable values need to be substituted.

$> mvn clean package

$> docker build –t urbanite/{component-name} .

$> docker run –p {PORT}:8080 urbanite/{component-name}

Depending on the respective component a certain configuration may need to be applied, for
example an API key. This can be achieved using environment variables, which can be passed to
Docker containers like so:

$> docker run –e {ENV_VAR}={value} urbanite/{component-name}

3.3 User Manual

In general, each component provides a human-readable form of its OpenAPI specification at
{hostname:port}/index.html. The corresponding file is stored at
src/main/resources/webroot/openapi.yaml. However, this does not apply to

those components that spawn their endpoints based on a library. This is specifically the case for
all pipe components that rely on the Piveau Pipe Connector library. These expose the common
endpoint at {hostname:port}/pipe, which accepts compliant pipe descriptors via the
HTTP POST method.

Aside from this most of the components require very little configuration and work out of the
box. The specific environment variables that need to be set for each service are listed in the
respective README.md file in the root directory.

7 https://maven.apache.org/

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 21

3.3.1 Scheduler

A special case however is the Scheduler, which requires a little more setup and also exposes
more endpoints than the other pipe components. As described previously the Scheduler serves
two main purposes: keeping track of existing pipe descriptors and managing triggers for these
pipes. In order to fulfil the former task, the pipe descriptors can either be copied to the
src/main/resources/pipes directory before compilation. Alternatively, the descriptors
can be managed using a GitLab repository. For this a so-called cluster-config akin to the snippet
shown in Figure 11 must be set.

The Scheduler frequently polls this repository, thereby detecting changes to the pipe descriptors
at runtime. In order to monitor pipe descriptors registered with the Scheduler, view their
contents or launch them manually the component exposes a shell, accessible either via HTTP or
Telnet. To enable this a shell config like the one in Figure 12 must be set.

This exposes HTTP access at {hostname}:8085/shell.html and Telnet access on port 5000.
The available shell commands are shown in Table 3.

Table 3: Scheduler Shell Commands

Command Description

pipes List available pipes.

show {pipeId} View contents specific pipe descriptor.

trigger {pipeId} List triggers of specific pipe.

launch {pipeId} Start specific pipe immediately.

PIVEAU_SHELL_CONFIG:

{

 "http": {

 "host": "0.0.0.0",

 "port": 8085

 }, "telnet": {

 "host": "0.0.0.0",

 "port": 5000

 }

}

Figure 12: PIVEAU_SHELL_CONFIG variable

PIVEAU_CLUSTER_CONFIG:

{

 "pipeRepositories": {

 "system": {

 "uri":

"https://gitlab.com/urbanite/harvesting-

pipes.git",

 "username": "gitlab-user",

 "token": "gitlab-token”,

 "branch": "master"

 }

 }

}

Figure 11: PIVEAU_CLUSTER_CONFIG variable

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 21

Management of triggers is made possible via an exposed RESTful API. The available paths and
corresponding methods are listed in Table 4.

Table 4: Scheduler API

Path Method Description

/triggers
GET Get a list of pipe IDs and scheduled triggers.

PUT Bulk update of all triggers.

/triggers/{pipeId}

GET Returns all triggers for the pipe with the specified pipeId.

PUT Create or update triggers for pipe with pipeId.

DELETE Delete previously created triggers.

3.4 Licensing information

The license terms for the software are under discussion among the consortium. AGPLv2 and
AGPLv38 are being considered.

3.5 Download

All source code resides in the GitLab maintained by Tecnalia9. There, pilot specific components
(i.e. data source adapters) are grouped in dedicated subgroups. Generic harvesters and
components resign in the root.

8 https://www.gnu.org/licenses/agpl-3.0.en.html
9 https://git.code.tecnalia.com/urbanite/private/wp3-data-management/harvester

DRAFT VERSIO
N

D3.2 – Data Harvesting Module and Connectors Implementation V1.0 – Final. Date: 30.09.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 21

4 Conclusions

Overall, this document describes the technical details of the components involved in the
harvesting process. This includes the custom adapters for data sources, both generic and pilot
specific as well as common components like the Scheduler. It is shown how these modules
integrate into the general URBANITE data management platform architecture and the Piveau
Pipe concept. The latter describes a mechanism of loose component coupling by standardising
exposed APIs, thereby fostering the reuse of existing services. For developers the deliverable
contains instructions on how to develop Piveau pipe compliant services.

Additionally, noteworthy components like the Scheduler are described in detail with respect to
implementation and configuration. A more general rundown of the other components is also
provided. In conclusion this deliverable allows the reader to get an understanding of the
technical solution(s) employed for the continuous harvesting of data sources.

5 References

[1] FhG, TEC and ENG, “Data curation module implementation-v1,” 2021.

[2] TEC, C. Messina, ENG, BIL, MLC and FhG, “URBANITE Mobility Data Sources Analysis,”
European Commission, 2020.

[3] FhG, TEC and ENG, “Data aggregation and storage module implementation-v1,” 2021.

[4] TEC, FhG, ENG and JSI, “URBANITE architecture,” 2021.

[5] F. Kirstein, K. Stefanidis, B. Dittwald, S. Dutkowski, S. Urbanek and M. Hauswirth, “Piveau: A
Large-Scale Open Data Management Platform Based on Semantic Web Technologies,”
2020.

[6] FhG, TEC and ENG, “Data harvesting module and connectors implementation-v1,” 2021.

[7] FhG, TEC and ENG, “URBANITE data structure and semantic model specification,” 2020.

[8] TEC, FhG, ENG and JSI, “Detailed requirements specification,” 2020.

DRAFT VERSIO
N

